Skip to main content
Log in

Negative Mechanical Materials and Metamaterials: Giant Out-of-Plane Auxeticity from Multi- Dimensional Wine-Rack-like Motifs

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

‘Negative mechanical materials / metamaterials’ refer to materials and/or engineered systems that exhibit anomalous macroscopic thermo-mechanical properties that emerge due to the structure of their subunits, rather than the specific chemical composition. As a result of their design/construction, they may exhibit anomalous macroscopic properties such as zero or negative Poisson’s ratios (auxetic), moduli and/or indices. Such zero/negative properties are not normally manifested by their conventional counterparts and may thus potentially be used in applications where typical materials cannot. This work will look into some of the more recent developments made in this field, focusing on how existing materials (e.g. crystals) are providing the blueprint for the design and manufacture of novel’ negative materials’. In particular, this work looks at how wine-rack like crystalline materials which are typically studied for their negative thermal expansion and/or negative compressibility properties can be modified so as to generate negative Poisson’s ratio through a novel mechanism involving forcing elements to move out-of-plane to generate giant out-of-plane auxeticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.E. Evans, M.A. Nkansah, I.J. Hutcherson, and S.C. Rogers, Nature 353, 124 (1991).

    Article  CAS  Google Scholar 

  2. K. Suga, H. Tanaka, D. Okumura, and Y. Shibutani, Smart Mater. Struct. 27, (2018).

  3. C. Davini, A. Favata, A. Micheletti, and R. Paroni, Smart Mater. Struct. 26, (2017).

  4. J.N. Grima, R. Cauchi, R. Gatt, and D. Attard, Compos. Struct. 106, (2013).

  5. A. Rawal, V. Kumar, H. Saraswat, D. Weerasinghe, K. Wild, D. Hietel, and M. Dauner, J. Mater. Sci. 52, 2534 (2017).

    Article  CAS  Google Scholar 

  6. P. Verma, M.L. Shofner, A. Lin, K.B. Wagner, and A.C. Griffin, Phys. Status Solidi B 252, 1455 (2015).

    Article  CAS  Google Scholar 

  7. D. Attard, D. Calleja, and J.N. Grima, Smart Mater. Struct. 27, (2018).

  8. T.C. Lim, Eur. J. Mech. A/Solids 28, 752 (2009).

    Article  Google Scholar 

  9. S. Neelakantan, W. Bosbach, J. Woodhouse, and A.E. Markaki, Acta Mater. 66, 326 (2014).

    Article  CAS  Google Scholar 

  10. J.N. Grima-Cornish, J.N. Grima, and K.E. Evans, Phys. Status Solidi B. 254, 1700190 (2017).

    Article  Google Scholar 

  11. K.E. Evans and K.L. Alderson, Eng. Sci. Educ. 149 (2000).

  12. M. Taylor, L. Francesconi, M. Gerendás, A. Shanian, C. Carson, and K. Bertoldi, Adv. Mater. 26, 1 (2014).

    Article  Google Scholar 

  13. D. Mousanezhad, S. Babaee, H. Ebrahimi, R. Ghosh, A.S. Hamouda, K. Bertoldi, and A. Vaziri, Sci. Rep. 5, 18306 (2015).

    Article  CAS  Google Scholar 

  14. K. Bertoldi, P.M. Reis, S. Willshaw, and T. Mullin, Adv. Mater. 22, 361 (2010).

    Article  CAS  Google Scholar 

  15. T.C. Lim, P. Cheang, and F. Scarpa, Phys. Status Solidi B. (2014).

    Google Scholar 

  16. K.W. Wojciechowski, F. Scarpa, J.N. Grima, and A. Alderson, Phys. Status Solidi B. (2019).

    Google Scholar 

  17. A.A. Pozniak and K.W. Wojciechowski, Phys. Status Solidi B. 251, 367 (2014).

    Article  CAS  Google Scholar 

  18. S.K. Bhullar, J.L. Wegner, and A. Mioduchowski, J. Eng. Technol. Res. (2010).

    Google Scholar 

  19. C.S. Ha, M.E. Plesha, and R.S. Lakes, Smart Mater. Struct. 25, 054005 (2016).

    Article  Google Scholar 

  20. P. Verma, M.L. Shofner, and A.C. Griffin, Phys. Status Solidi B. 251, 289 (2014).

    Article  CAS  Google Scholar 

  21. K.K. Dudek, W. Wolak, M.R. Dudek, R. Caruana-Gauci, R. Gatt, K.W. Wojciechowski, and J.N. Grima, Phys. Status Solidi - Rapid Res. Lett. 11, 1700122 (2017).

    Article  Google Scholar 

  22. N. Novak, M. Vesenjak, G. Kennedy, N. Thadhani, and Z. Ren, Phys. Status Solidi B. 1900099 (2019).

    Google Scholar 

  23. J.N. Grima, M.C. Grech, J.N. Grima-Cornish, R. Gatt, and D. Attard, Ann. Phys. 530, 1700330 (2018).

    Article  Google Scholar 

  24. A.A. Pozniak, H. Kaminski, P. Kedziora, B. Maruszewski, T. Strek, and K.W. Wojciechowski, Rev. Adv. Mater. Sci. 23, 169 (2010).

    Google Scholar 

  25. R. Caruana-Gauci, E.P. Degabriele, D. Attard, and J.N. Grima, J. Mater. Sci. 53, 5079 (2018).

    Article  CAS  Google Scholar 

  26. E.P. Degabriele, D. Attard, J.N. Grima-Cornish, R. Caruana-Gauci, R. Gatt, K.E. Evans, and J.N. Grima, Phys. Status Solidi B. 256, 1800572 (2019).

    Article  Google Scholar 

  27. J.N. Grima, D. Attard, R. Caruana-Gauci, and R. Gatt, Scr. Mater. 65, 565 (2011).

    Article  CAS  Google Scholar 

  28. Y. Yan, A.E. O’Connor, G. Kanthasamy, G. Atkinson, D.R. Allan, A.J. Blake, and M. Schröder, J. Am. Chem. Soc. 133, jacs. 7b11747 (2018).

    Google Scholar 

  29. Y. Qiao, K. Wang, H. Yuan, K. Yang, and B. Zou, J. Phys. Chem. Lett. 6, 2755 (2015).

    Article  CAS  Google Scholar 

  30. F.-X. Coudert, Phys. Chem. Chem. Phys. 15, 16012 (2013).

    Article  CAS  Google Scholar 

  31. J.N. Grima, M. Bajada, S. Scerri, D. Attard, K.K. Dudek, and R. Gatt, Proc. R. Soc. A Math. Phys. Eng. Sci. 471, (2015).

  32. W. Cai and A. Katrusiak, Nat. Commun. 5, 1 (2014).

    Google Scholar 

  33. R.H. Baughman, S. Stafström, C. Cui, and S.O. Dantas, Science. 279, 1522 (1998).

    Article  CAS  Google Scholar 

  34. A.B. Cairns and A.L. Goodwin, Phys. Chem. Chem. Phys. 17, 20449 (2015).

    Article  CAS  Google Scholar 

  35. W. Li, M.R. Probert, M. Kosa, T.D. Bennett, A. Thirumurugan, R.P. Burwood, M. Parinello, J.A.K. Howard, and A.K. Cheetham, J. Am. Chem. Soc. 134, 11940 (2012).

    Article  CAS  Google Scholar 

  36. J.N. Grima-Cornish, IUCr Newsletter 27 (2019).

  37. W.P. Mason, New York, Van Nostrand (1950).

    Google Scholar 

  38. K.E. Evans, A. Alderson, and F.R. Christian, J. Chem. Soc. Faraday Trans. 91, 2671 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grima-Cornish, J.N., Grima, J.N. & Attard, D. Negative Mechanical Materials and Metamaterials: Giant Out-of-Plane Auxeticity from Multi- Dimensional Wine-Rack-like Motifs. MRS Advances 5, 717–725 (2020). https://doi.org/10.1557/adv.2020.48

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.48

Navigation