Skip to main content

Advertisement

Log in

Hybrid improper antiferroelectricity—New insights for novel device concepts

  • Snapshot Reviews
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Antiferroelectrics have been studied for decades, with most research focused on PbZrO3 or related compounds obtained through chemical substitution. Although there are several important antiferroelectrics found in AVO4 (A=Dy, Bi), orthorhombic ABC semiconductors (e.g., MgSrSi) and hydrogen-bonded antiferroelectric materials, experimentally demonstrated antiferroelectrics are far less common. Furthermore, antiferroelectrics have potential applications in energy storage and for strain and force generators. In recent years, hybrid improper ferroelectrics have been intensively studied, along which the hybrid improper antiferroelectric phase was proposed and demonstrated in (001) Ruddlesden-Popper A3B2O7 thin films from first-principles calculations. Later, the hybrid improper antiferroelectric phase was discovered experimentally in several Ruddlesden-Popper perovskites in bulk. Across the hybrid improper ferroelectric-antiferroelectric phase transition, several interesting phenomena were also predicted. In this snapshot review, we describe recent progress in hybrid improper antiferroelectricity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.E. Lines and A.M. Glass. Principles and Applications of Ferroelectrics and Related Materials, Cambridge University Press (1977).

  2. T. Mitsui. Ferroelectrics and antiferroelectrics, in Springer Handbook of Condensed Matter and Materials Data, Part 4, Springer-Verlag, pp. 903–938 (2005).

  3. C. Kittel. Phys. Rev. 82, 729 (1951).

    CAS  Google Scholar 

  4. P. Tolédano and M. Guennou. Phys. Rev. B 94, 014107 (2016).

    Google Scholar 

  5. K. M. Rabe, in Functional Metal Oxides: New Science and Novel Applications, edited by S. Ogale and V. Venkateshan, Wiley, New York (2013).

    Google Scholar 

  6. H. Liu and B. Dkhil. J. Kristallogr. 226, 163 (2011).

    CAS  Google Scholar 

  7. X. Tan, C. Ma, J. Fredrick, S. Beckman, and K. G. Webber. J. Am. Ceram. Soc. 94, 4091 (2011).

    CAS  Google Scholar 

  8. H. Unoki and T. Sakudo. Phys. Rev. Lett. 38, 137 (1977).

    CAS  Google Scholar 

  9. J. W. Bennett, K. F. Garrity, K. M. Rabe, and D. Vanderbilt. Phys. Rev. Lett. 110, 017603 (2013).

    Google Scholar 

  10. I. N. Flerov and E. A. Mikhaleva. Phys. Solid State 50, 478–484 (2008).

    CAS  Google Scholar 

  11. J. Lasave, S. Koval, N. S. Dalal, and R. L. Migoni. Phys. Rev. Lett. 98, 267601 (2007).

    CAS  Google Scholar 

  12. K. Kobayashi, S. Horiuchi, S. Ishibashi, Y. Murakami, and R. Kumai. J. Am. Chem. Soc. 140, 3842–3845 (2018).

    CAS  Google Scholar 

  13. S. Horiuchi, F. Kagawa, K. Hatahara, K. Kobayashi, R. Kumai, Y. Murakami, and Y. Tokura. Nat. Commun. 3, 1308 (2012).

    Google Scholar 

  14. G. Shirane, E. Sawaguchi. and Y. Takagi. Phys. Rev. 84, 476 (1951).

    CAS  Google Scholar 

  15. W. Känzig. Ferroelectrics and Antiferroelectrics (Academic Press, New York, 1957).

    Google Scholar 

  16. X.-Z. Lu and J. M. Rondinelli. Nat. Mater. 15, 951 (2016).

    CAS  Google Scholar 

  17. N. A. Benedek and C. J. Fennie. Phys. Rev. Lett. 106, 107204 (2011).

    Google Scholar 

  18. A.B. Harris. Phys. Rev. B 84, 064116 (2011).

    Google Scholar 

  19. N. A. Benedek, A. T. Mulder, and C. J. Fennie. J. Solid State Chem. 195, 11 (2012).

    CAS  Google Scholar 

  20. A. T. Mulder, N. A. Benedek, J. M. Rondinelli, and C. J. Fennie. Adv. Funct. Mater. 23, 4810–4820 (2013).

    CAS  Google Scholar 

  21. N.A. Benedek, J.M. Rondinelli, H. Djani, Ph. Ghosez, and P. Lightfoot. Dalton Trans. 44, 10543–10558 (2015).

    CAS  Google Scholar 

  22. B. B. Van Aken, T. T. M. Palstra, A. Filippetti, and N. A. Spaldin. Nat. Mater. 3, 164–170 (2004).

    Google Scholar 

  23. E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J.-M. Triscone, and P. Ghosez. Nature 452, 732–736 (2008).

    CAS  Google Scholar 

  24. Y. S. Oh, X. Luo, F.-T. Huang, Y. Wang, S.-W. Cheong. Nat. Mater. 14, 407–413 (2015).

    CAS  Google Scholar 

  25. M. S. Senn, A. Bombardi, C. A. Murray, C. Vecchini, A. Scherillo, X. Luo, and S. W. Cheong. Phys. Rev. Lett. 114, 035701 (2015).

    CAS  Google Scholar 

  26. X. Q. Liu, J. W. Wu, X. X. Shi, H. J. Zhao, H. Y. Zhou, R. H. Qiu, W. Q. Zhang, and X. M. Chen. Appl. Phys. Lett. 106, 202903 (2015).

    Google Scholar 

  27. X.-Z. Lu and J. M. Rondinelli, Adv. Funct. Mater. 27, 1604312 (2017).

    Google Scholar 

  28. S. Yoshida, K. Fujita, H. Akamatsu, O. Hernandez, A.S. Gupta, F.G. Brown, H. Padmanabhan, A.S. Gibbs, T. Kuge, R. Tsuji, S. Murai, J.M. Rondinelli, V. Gopalan, and K. Tanaka. Adv. Funct. Mater. 28, 1801856 (2018).

    Google Scholar 

  29. S. Yoshida, H. Akamatsu, R. Tsuji, O. Hernandez, H. Padmanabhan, A.S. Gupta, A.S. Gibbs, K. Mibu, S. Murai, J.M. Rondinelli, V. Gopalan, K. Tanaka, and K. Fujita. J. Am. Chem. Soc. 140, 15690–15700 (2018).

    CAS  Google Scholar 

  30. X.-Z. Lu and J. M. Rondinelli, Physical Review Materials 2, 054409, (2018).

    CAS  Google Scholar 

  31. M.J. Pitcher, P. Mandal, M.S. Dyer, J. Alaria, P. Borisov, H. Niu, J.B. Claridge, and M.J. Rosseinsky. Science 347, 420–424 (2015).

    CAS  Google Scholar 

  32. Y. Wang, F.-T. Huang, X. Luo, B. Gao, and S.-W. Cheong. Advanced Materials, 29, 1601288 (2017).

    Google Scholar 

  33. D.G. Schlom, L.-Q. Chen, C.J. Fennie, V. Gopalan, D.A. Muller, X. Pan, R. Ramesh, and R. Uecker. MRS Bull. 39, 118–130 (2014).

    CAS  Google Scholar 

  34. J. M. Rondinelli, S. J. May, and J. W. Freeland. MRS Bulletin 37, 261–270 (2012).

    CAS  Google Scholar 

  35. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke. Phys. Rev. Lett. 100, 136406 (2008).

    Google Scholar 

  36. R. D. Shannon. Acta Crystallogr. A 32, 751 (1976).

    Google Scholar 

  37. F.-T. Huang, B. Gao, J.-W. Kim, X. Luo, Y. Wang, M.-W. Chu, C.-K. Chang, H.-S. Sheu, and S.-W. Cheong. npj Quantum Materials 1, 16017 (2016).

    Google Scholar 

  38. T. Zhu, G. Khalsa, D. M. Havas, A. S. Gibbs, W. Zhang, P. S. Halasyamani, N. A. Benedek, and M. A. Hayward. Chem. Mater. 30, 8915–8924 (2018).

    CAS  Google Scholar 

  39. R. Zhang, B. M. Abbett, G. Read, F. Lang, T. Lancaster, T. T. Tran, P. S. Halasyamani, S. J. Blundell, N. A. Benedek, and M. A. Hayward. Inorg. Chem. 55, 8951–8960 (2016).

    CAS  Google Scholar 

  40. P. D. Battle, J. E. Millburn, and M. J. Rosseinsky. Chem. Mater. 9, 3136–3143 (1997).

    CAS  Google Scholar 

  41. M. Sánchez-Andújar and M. A. Señarís-Rodríguez. Z. anorg. allg. Chem. 633, 1890–1896 (2007).

    Google Scholar 

  42. P. J. Hickey, C. S. Knee, P. F. Henry, and M. T. Weller. Phys. Rev. B 75, 024113 (2007).

    Google Scholar 

  43. D. Samaras, A. Collomb, and J. C. Joubert. J. Solid State Chem. 7, 337–348 (1973).

    CAS  Google Scholar 

  44. E. A. Nowadnick and Craig J. Fennie. Phys. Rev. B 94, 104105 (2016).

    Google Scholar 

  45. P. V. Balachandran, D. Puggioni, and J. M. Rondinelli. Inorg. Chem. 53, 336–348 (2014).

    CAS  Google Scholar 

  46. P. Jain, N. S. Dalal, B. H. Toby, H. W. Kroto, and A. K. Cheetham. J. Am. Chem. Soc. 130, 32, 10450–10451 (2008).

    CAS  Google Scholar 

  47. H. L. B. Boström, M. S. Senn, and A. L. Goodwin. Nature Commun. 9, 2380 (2018).

    Google Scholar 

  48. H. Djani, E.E. McCabe, W. Zhang, P.S. Halasyamani, A. Feteira, J. Bieder, E. Bousquet, and P. Ghosez. Phys. Rev. B 101, 134113 (2020).

    CAS  Google Scholar 

  49. R. Uppuluri, H. Akamatsu, A.S. Gupta, H. Wang, C.M. Brown, K.E. Agueda Lopez, N. Alem, V. Gopalan, and T.E. Mallouk. Chem. Mater. 31, 4418–4425 (2019).

    CAS  Google Scholar 

  50. Z. Wu, X. Liu, C. Ji, L. Li, S. Wang, Y. Peng, K. Tao, Z. Sun, M. Hong, and J. Luo. J. Am. Chem. Soc. 141, 3812–3816 (2019).

    CAS  Google Scholar 

  51. N. V. Ter-Oganessian and V. P. Sakhnenko. J. Phys.: Condens. Matter 32, 275401 (2020).

    CAS  Google Scholar 

  52. T. Cao, D. Wang, D.-S. Geng, L.-M. Liu, and J. Zhao. Phys. Chem. Chem. Phys. 18, 7156 (2016).

    CAS  Google Scholar 

  53. J. Noborisaka, K. Nishiguchi, and A. Fujiwara. Sci. Rep. 4, 6950 (2014).

    CAS  Google Scholar 

  54. N. Lu, H. Guo, L. Li, J. Dai, L. Wang, W.-N. Mei, X. Wu, and X. C. Zeng. Nanoscale 6, 2879 (2014).

    CAS  Google Scholar 

  55. Z. Y. Zhang, M. S. Si, Y. H. Wang, X. P. Gao, D. Sung, S. Hong, and J. He. J. Chem. Phys. 140, 174707 (2014).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Zeng Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, XZ., Rondinelli, J.M. Hybrid improper antiferroelectricity—New insights for novel device concepts. MRS Advances 5, 3521–3545 (2020). https://doi.org/10.1557/adv.2020.450

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.450

Navigation