Abstract
Antiferroelectrics have been studied for decades, with most research focused on PbZrO3 or related compounds obtained through chemical substitution. Although there are several important antiferroelectrics found in AVO4 (A=Dy, Bi), orthorhombic ABC semiconductors (e.g., MgSrSi) and hydrogen-bonded antiferroelectric materials, experimentally demonstrated antiferroelectrics are far less common. Furthermore, antiferroelectrics have potential applications in energy storage and for strain and force generators. In recent years, hybrid improper ferroelectrics have been intensively studied, along which the hybrid improper antiferroelectric phase was proposed and demonstrated in (001) Ruddlesden-Popper A3B2O7 thin films from first-principles calculations. Later, the hybrid improper antiferroelectric phase was discovered experimentally in several Ruddlesden-Popper perovskites in bulk. Across the hybrid improper ferroelectric-antiferroelectric phase transition, several interesting phenomena were also predicted. In this snapshot review, we describe recent progress in hybrid improper antiferroelectricity.
Similar content being viewed by others
References
M.E. Lines and A.M. Glass. Principles and Applications of Ferroelectrics and Related Materials, Cambridge University Press (1977).
T. Mitsui. Ferroelectrics and antiferroelectrics, in Springer Handbook of Condensed Matter and Materials Data, Part 4, Springer-Verlag, pp. 903–938 (2005).
C. Kittel. Phys. Rev. 82, 729 (1951).
P. Tolédano and M. Guennou. Phys. Rev. B 94, 014107 (2016).
K. M. Rabe, in Functional Metal Oxides: New Science and Novel Applications, edited by S. Ogale and V. Venkateshan, Wiley, New York (2013).
H. Liu and B. Dkhil. J. Kristallogr. 226, 163 (2011).
X. Tan, C. Ma, J. Fredrick, S. Beckman, and K. G. Webber. J. Am. Ceram. Soc. 94, 4091 (2011).
H. Unoki and T. Sakudo. Phys. Rev. Lett. 38, 137 (1977).
J. W. Bennett, K. F. Garrity, K. M. Rabe, and D. Vanderbilt. Phys. Rev. Lett. 110, 017603 (2013).
I. N. Flerov and E. A. Mikhaleva. Phys. Solid State 50, 478–484 (2008).
J. Lasave, S. Koval, N. S. Dalal, and R. L. Migoni. Phys. Rev. Lett. 98, 267601 (2007).
K. Kobayashi, S. Horiuchi, S. Ishibashi, Y. Murakami, and R. Kumai. J. Am. Chem. Soc. 140, 3842–3845 (2018).
S. Horiuchi, F. Kagawa, K. Hatahara, K. Kobayashi, R. Kumai, Y. Murakami, and Y. Tokura. Nat. Commun. 3, 1308 (2012).
G. Shirane, E. Sawaguchi. and Y. Takagi. Phys. Rev. 84, 476 (1951).
W. Känzig. Ferroelectrics and Antiferroelectrics (Academic Press, New York, 1957).
X.-Z. Lu and J. M. Rondinelli. Nat. Mater. 15, 951 (2016).
N. A. Benedek and C. J. Fennie. Phys. Rev. Lett. 106, 107204 (2011).
A.B. Harris. Phys. Rev. B 84, 064116 (2011).
N. A. Benedek, A. T. Mulder, and C. J. Fennie. J. Solid State Chem. 195, 11 (2012).
A. T. Mulder, N. A. Benedek, J. M. Rondinelli, and C. J. Fennie. Adv. Funct. Mater. 23, 4810–4820 (2013).
N.A. Benedek, J.M. Rondinelli, H. Djani, Ph. Ghosez, and P. Lightfoot. Dalton Trans. 44, 10543–10558 (2015).
B. B. Van Aken, T. T. M. Palstra, A. Filippetti, and N. A. Spaldin. Nat. Mater. 3, 164–170 (2004).
E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J.-M. Triscone, and P. Ghosez. Nature 452, 732–736 (2008).
Y. S. Oh, X. Luo, F.-T. Huang, Y. Wang, S.-W. Cheong. Nat. Mater. 14, 407–413 (2015).
M. S. Senn, A. Bombardi, C. A. Murray, C. Vecchini, A. Scherillo, X. Luo, and S. W. Cheong. Phys. Rev. Lett. 114, 035701 (2015).
X. Q. Liu, J. W. Wu, X. X. Shi, H. J. Zhao, H. Y. Zhou, R. H. Qiu, W. Q. Zhang, and X. M. Chen. Appl. Phys. Lett. 106, 202903 (2015).
X.-Z. Lu and J. M. Rondinelli, Adv. Funct. Mater. 27, 1604312 (2017).
S. Yoshida, K. Fujita, H. Akamatsu, O. Hernandez, A.S. Gupta, F.G. Brown, H. Padmanabhan, A.S. Gibbs, T. Kuge, R. Tsuji, S. Murai, J.M. Rondinelli, V. Gopalan, and K. Tanaka. Adv. Funct. Mater. 28, 1801856 (2018).
S. Yoshida, H. Akamatsu, R. Tsuji, O. Hernandez, H. Padmanabhan, A.S. Gupta, A.S. Gibbs, K. Mibu, S. Murai, J.M. Rondinelli, V. Gopalan, K. Tanaka, and K. Fujita. J. Am. Chem. Soc. 140, 15690–15700 (2018).
X.-Z. Lu and J. M. Rondinelli, Physical Review Materials 2, 054409, (2018).
M.J. Pitcher, P. Mandal, M.S. Dyer, J. Alaria, P. Borisov, H. Niu, J.B. Claridge, and M.J. Rosseinsky. Science 347, 420–424 (2015).
Y. Wang, F.-T. Huang, X. Luo, B. Gao, and S.-W. Cheong. Advanced Materials, 29, 1601288 (2017).
D.G. Schlom, L.-Q. Chen, C.J. Fennie, V. Gopalan, D.A. Muller, X. Pan, R. Ramesh, and R. Uecker. MRS Bull. 39, 118–130 (2014).
J. M. Rondinelli, S. J. May, and J. W. Freeland. MRS Bulletin 37, 261–270 (2012).
J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke. Phys. Rev. Lett. 100, 136406 (2008).
R. D. Shannon. Acta Crystallogr. A 32, 751 (1976).
F.-T. Huang, B. Gao, J.-W. Kim, X. Luo, Y. Wang, M.-W. Chu, C.-K. Chang, H.-S. Sheu, and S.-W. Cheong. npj Quantum Materials 1, 16017 (2016).
T. Zhu, G. Khalsa, D. M. Havas, A. S. Gibbs, W. Zhang, P. S. Halasyamani, N. A. Benedek, and M. A. Hayward. Chem. Mater. 30, 8915–8924 (2018).
R. Zhang, B. M. Abbett, G. Read, F. Lang, T. Lancaster, T. T. Tran, P. S. Halasyamani, S. J. Blundell, N. A. Benedek, and M. A. Hayward. Inorg. Chem. 55, 8951–8960 (2016).
P. D. Battle, J. E. Millburn, and M. J. Rosseinsky. Chem. Mater. 9, 3136–3143 (1997).
M. Sánchez-Andújar and M. A. Señarís-Rodríguez. Z. anorg. allg. Chem. 633, 1890–1896 (2007).
P. J. Hickey, C. S. Knee, P. F. Henry, and M. T. Weller. Phys. Rev. B 75, 024113 (2007).
D. Samaras, A. Collomb, and J. C. Joubert. J. Solid State Chem. 7, 337–348 (1973).
E. A. Nowadnick and Craig J. Fennie. Phys. Rev. B 94, 104105 (2016).
P. V. Balachandran, D. Puggioni, and J. M. Rondinelli. Inorg. Chem. 53, 336–348 (2014).
P. Jain, N. S. Dalal, B. H. Toby, H. W. Kroto, and A. K. Cheetham. J. Am. Chem. Soc. 130, 32, 10450–10451 (2008).
H. L. B. Boström, M. S. Senn, and A. L. Goodwin. Nature Commun. 9, 2380 (2018).
H. Djani, E.E. McCabe, W. Zhang, P.S. Halasyamani, A. Feteira, J. Bieder, E. Bousquet, and P. Ghosez. Phys. Rev. B 101, 134113 (2020).
R. Uppuluri, H. Akamatsu, A.S. Gupta, H. Wang, C.M. Brown, K.E. Agueda Lopez, N. Alem, V. Gopalan, and T.E. Mallouk. Chem. Mater. 31, 4418–4425 (2019).
Z. Wu, X. Liu, C. Ji, L. Li, S. Wang, Y. Peng, K. Tao, Z. Sun, M. Hong, and J. Luo. J. Am. Chem. Soc. 141, 3812–3816 (2019).
N. V. Ter-Oganessian and V. P. Sakhnenko. J. Phys.: Condens. Matter 32, 275401 (2020).
T. Cao, D. Wang, D.-S. Geng, L.-M. Liu, and J. Zhao. Phys. Chem. Chem. Phys. 18, 7156 (2016).
J. Noborisaka, K. Nishiguchi, and A. Fujiwara. Sci. Rep. 4, 6950 (2014).
N. Lu, H. Guo, L. Li, J. Dai, L. Wang, W.-N. Mei, X. Wu, and X. C. Zeng. Nanoscale 6, 2879 (2014).
Z. Y. Zhang, M. S. Si, Y. H. Wang, X. P. Gao, D. Sung, S. Hong, and J. He. J. Chem. Phys. 140, 174707 (2014).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lu, XZ., Rondinelli, J.M. Hybrid improper antiferroelectricity—New insights for novel device concepts. MRS Advances 5, 3521–3545 (2020). https://doi.org/10.1557/adv.2020.450
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2020.450