Skip to main content

Advertisement

Log in

Titanium Disulphide (TiS2) Dichalcogenide Thin Films as Inorganic Hole Transport Layer for Perovskite Solar Cells Synthesized from Ionic Liquid Electrodeposition

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

In high efficiency organic-inorganic perovskite solar cells formed as a multilayer structure, the hole transporting layer (HTL) at the perovskite absorber layer interface has a critical role. Organic HTLs based on Spiro-OMeTAD and PTAA have led to high efficiencies but displayed poor long-term stability and involves expensive purification processes that hinders universal low-cost commercialization goals for perovskite solar cells. Though as an inorganic alternative, transition metal chalcogenides have been investigated for HTL recently, the hot-injection method often used in synthesis has shown poor reproducibility and difficulty in scaling-up. In this work we demonstrate an ab initio facile inexpensive scalable synthesis of transition metal dichalcogenide (TiS2) by electrodeposition from ionic liquids as a low-cost inorganic HTL for perovskite solar cells. The TiS2 thin films were electrodeposited from choline chloride–urea eutectic based ionic liquid electrolytes at 80°C with Na2S2O3 as sulphur and TiCl4 as titanium source. From cyclic voltammetry studies the deposition potential of TiS2 was optimized at -0.8V vs Pt. The as-deposited TiS2 HTL exhibited polycrystalline structure with preferential growth along (001), (100), (002), (102), (110), (111) planes. The Raman spectroscopy of the films showed peaks around 225 cm−1 and 332 cm−1 attributed to the Eg and A1 g Raman modes respectively. The synthesized thin films demonstrated sharp optical bandgap edge along with bandgap tunability as the bandgap (direct) decreased from 1.53 eV to 1.49 eV, 1.40 eV, and 1.34 eV with gradual change in deposition potential from −0.8 V to −0.9 V, −1.0 V, and −1.1 V vs Pt, respectively. This aspect has potential for alignment of valance band edge in facilitating the hole transport at the perovskite-TiS2 interface. The absorption coefficient in visible-light range of the as-deposited TiS2 thin films likewise has shown a dependence on the synthesis potential which is highly conducive for application as an HTL in multilayer solar cell structure. The TiS2 thin films were observed to be p-type as shown from the Hall effect studies with a carrier mobility up to 14.4 cm2V−1s−1. A detailed study of the effect of the synthesis parameters on the structural, optical, band-edge, and electronic properties of TiS2 thin films suitable for application as HTL in perovskite solar cells is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Winter and P. Heitjans, J. Phys. Chem. B 105, 6108 (2001).

    Article  CAS  Google Scholar 

  2. M.S. Whittingham, Science 192, 1126 (1976).

    Article  CAS  Google Scholar 

  3. M. Parvaz, S. Ahmed, M.B. Khan, S. Rahul, Z.H. Ahmad Khan, AIP Conf. Proc. 1953, 030121 (2018).

    Article  Google Scholar 

  4. U. Gupta, B.G. Rao, U. Maitra, B.E. Prasad, and C.N.R. Rao, Chem. - An Asian J. 9, 1311 (2014).

    Article  CAS  Google Scholar 

  5. Y. Xu and M.A.A. Schoonen, Am. Mineral. 85, 543 (2000).

    Article  CAS  Google Scholar 

  6. L.E. Conroy and K.C. Park, Inorg. Chem. 7, 459 (1968).

    Article  CAS  Google Scholar 

  7. K. Rakstys, M. Saliba, P. Gao, P. Gratia, E. Kamarauskas, S. Paek, V. Jankauskas, and M.K. Nazeeruddin, Angew. Chemie - Int. Ed. 55, 7464 (2016).

    Article  CAS  Google Scholar 

  8. M. Saliba, S. Orlandi, T. Matsui, et al., Nat. Energy 1, 1 (2016).

    Article  Google Scholar 

  9. A. J. Huckaba, S. Gharibzadeh, M. Ralaiarisoa, et al., Small Methods 1, 1700250 (2017).

    Article  Google Scholar 

  10. H. Nam, H. Yang, E. Kim, C. Bae, and H. Shin, J. Vac. Sci. Technol. A 37, 020916 (2019).

    Article  Google Scholar 

  11. V. Pore, M. Ritala, and M. Leskelä, Chem. Vap. Depos. 13, 163 (2007).

    Article  CAS  Google Scholar 

  12. C.J. Carmalt, I.P. Parkin, and E.S. Peters, Polyhedron 22, 1263 (2003).

    Article  CAS  Google Scholar 

  13. H.S.W. Chang and D.M. Schleich, J. Solid State Chem. 100, 62 (1992).

    Article  CAS  Google Scholar 

  14. L. Yuwen, H. Yu, X. Yang, J. Zhou, Q. Zhang, Y. Zhang, Z. Luo, S. Su, and L. Wang, Chem. Commun. 52, 529 (2016).

    Article  CAS  Google Scholar 

  15. S. Jeong, D. Yoo, J. Jang, M. Kim, and J. Cheon, J. Am. Chem. Soc. 134, 18233 (2012).

    Article  CAS  Google Scholar 

  16. M. Vehkamäki, T. Hatanpää, M. Ritala, and M. Leskelä, J. Mater. Chem. 14, 3191 (2004).

    Article  Google Scholar 

  17. A.C. Rastogi and N.R. Janardhana, Thin Solid Films 565, 285 (2014).

    Article  CAS  Google Scholar 

  18. M. Rami, E. Benamar, M. Fahoume, and A. Ennaoui, Phys. Status Solidi Appl. Res. 172, 137 (1999).

    Article  CAS  Google Scholar 

  19. F. Endres and A. Schweizer, Phys. Chem. Chem. Phys. 2, 5455 (2000).

    Article  CAS  Google Scholar 

  20. P.M.S. Monk, Fundamentals of Electroanalytical Chemistry (Wiley, 2008).

  21. D.D. Shivagan, P.J. Dale, A.P. Samantilleke, and L.M. Peter, Thin Solid Films 515, 5899 (2007).

    Article  CAS  Google Scholar 

  22. P.Y. Chen and I.W. Sun, Electrochim. Acta 45, 3163 (2000).

    Article  CAS  Google Scholar 

  23. C.S. Creaser and J.A. Creighton, J. Chem. Soc. Dalt. Trans. 1402 (1974).

  24. S.J. Denholme, P.S. Dobson, J.M.R. Weaver, I. MacLaren, and D.H. Gregory, Int. J. Nanotechnol. 9, 23 (2012).

    Article  CAS  Google Scholar 

  25. Y. Liu, C. Liang, J. Wu, et al., Adv. Mater. Interfaces 5, 1700895 (2018).

    Article  Google Scholar 

  26. K. Wu, E. Torun, H. Sahin, B. Chen, X. Fan, A. Pant, D.P. Wright, T. Aoki, F.M. Peeters, E. Soignard, and S. Tongay, Nat. Commun. 7, 1 (2016).

    CAS  Google Scholar 

  27. A. Lipatov, M. J. Loes, H. Lu, et al., ACS Nano 12, 12713 (2018).

    Article  CAS  Google Scholar 

  28. J. Ranalli, Dimensionality Effect of Titanium Disulphide Nanosheets on Its Vibrational Properties Measured via Raman Spectroscopy, Politecnico di Milano, 2016.

  29. C.J. Carmalt, S.A. O’Neill, I.P. Parkin, and E.S. Peters, J. Mater. Chem. 14, 830 (2004).

    Article  CAS  Google Scholar 

  30. Y.H. Liu, S.H. Porter, and J.E. Goldberger, J. Am. Chem. Soc. 134, 5044 (2012).

    Article  CAS  Google Scholar 

  31. P.C. Klipstein and R.H. Friend, J. Phys. C Solid State Phys. 17, 2713 (1984).

    Article  CAS  Google Scholar 

  32. R.H. Friend, D. Jérome, W.Y. Liang, C. Mikkelsen, and A.D. Yoffe, J. Phys. C Solid State Phys. 10, L705 (1977).

    Article  CAS  Google Scholar 

  33. C.G. Hawkins and L. Whittaker-Brooks, ACS Appl. Nano Mater. 1, 851 (2018).

    Article  CAS  Google Scholar 

  34. C. Bourgès, T. Barbier, G. Guélou, P. Vaqueiro, A. V. Powell, O.I. Lebedev, N. Barrier, Y. Kinemuchi, and E. Guilmeau, J. Eur. Ceram. Soc. 36, 1183 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Asif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asif, O., Azadian, F. & Rastogi, A.C. Titanium Disulphide (TiS2) Dichalcogenide Thin Films as Inorganic Hole Transport Layer for Perovskite Solar Cells Synthesized from Ionic Liquid Electrodeposition. MRS Advances 5, 3555–3564 (2020). https://doi.org/10.1557/adv.2020.412

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.412

Navigation