Skip to main content

Advertisement

Log in

A snapshot review on exciton engineering in deformed 2D materials

  • Snapshot Reviews
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Most optoelectronic characteristics of two-dimensional (2D) materials are associated with excitonic effects. Excitonic effects in 2D material have been intensively investigated, and various efforts to engineer exciton behavior in 2D materials have been reported for advanced nanophotonic and optoelectronic applications. Excitons in 2D semiconductors can be controlled by external stimuli, including mechanical, electrical, thermal, and magnetic stimuli. Mechanical stimuli applied to a 2D material can generate uniform or non-uniform deformation and strain gradient in the 2D lattice, which creates a strain-induced bandgap energy gradient in the 2D material. In an inhomogeneous bandgap energy gradient generated by a non-uniform strain gradient, excitons drift across the energy gradient. Exciton engineering in deformed 2D materials aims to control exciton movement by mechanical strain. In this snapshot review, we focus on exciton engineering in a mechanically deformed 2D material and their potential towards advanced optoelectronic and photonic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.F. Mak, K. He, C. Lee, G.H. Lee, J. Hone, T.F. Heinz, and J. Shan, Nat. Mater. 12, 207 (2013).

    CAS  Google Scholar 

  2. J.S. Ross, S. Wu, H. Yu, N.J. Ghimire, A.M. Jones, G. Aivazian, J. Yan, D.G. Mandrus, D. Xiao, W. Yao, and X. Xu, Nat. Commun. 4, 1 (2013).

    CAS  Google Scholar 

  3. K.L. Seyler, J.R. Schaibley, P. Gong, P. Rivera, A.M. Jones, S. Wu, J. Yan, D.G. Mandrus, W. Yao, and X. Xu, Nat. Nanotechnol. 10, 407 (2015).

    CAS  Google Scholar 

  4. A. Chernikov, A.M. Van Der Zande, H.M. Hill, A.F. Rigosi, A. Velauthapillai, J. Hone, and T.F. Heinz, Phys. Rev. Lett. 115, 126802 (2015).

    Google Scholar 

  5. E.J. Sie, J.W. McLver, Y.H. Lee, L. Fu, J. Kong, and N. Gedik, Nat. Mater. 14, 290 (2015).

    CAS  Google Scholar 

  6. G. Aivazian, Z. Gong, A.M. Jones, R.L. Chu, J. Yan, D.G. Mandrus, C. Zhang, D. Cobden, W. Yao, and X. Xu, Nat. Phys. 11, 148 (2015).

    CAS  Google Scholar 

  7. A. Srivastava, M. Sidler, A. V. Allain, D.S. Lembke, A. Kis, and A. Imamoʇlu, Nat. Phys. 11, 141 (2015).

    CAS  Google Scholar 

  8. D. Macneill, C. Heikes, K.F. Mak, Z. Anderson, A. Kormányos, V. Zólyomi, J. Park, and D.C. Ralph, Phys. Rev. Lett. 114, 037401 (2015).

    CAS  Google Scholar 

  9. Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y.D. Kim, A.M. Van Der Zande, A. Rigosi, H.M. Hill, S.H. Kim, J. Hone, Z. Li, D. Smirnov, and T.F. Heinz, Phys. Rev. Lett. 113, 266804 (2014).

    Google Scholar 

  10. M. Ieong, B. Doris, J. Kedzierski, K. Rim, and M. Yang, Science (80-.). 306, 2057 (2004).

    CAS  Google Scholar 

  11. K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).

    Google Scholar 

  12. C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, and S. Ryu, ACS Nano 4, 2695 (2010).

    CAS  Google Scholar 

  13. S. Bertolazzi, J. Brivio, and A. Kis, ACS Nano 5, 9703 (2011).

    CAS  Google Scholar 

  14. H. Peelaers and C.G. Van De Walle, Phys. Rev. B - Condens. Matter Mater. Phys. 86, 241401 (2012).

    Google Scholar 

  15. W.S. Yun, S.W. Han, S.C. Hong, I.G. Kim, and J.D. Lee, Phys. Rev. B - Condens. Matter Mater. Phys. 85, 033305 (2012).

    Google Scholar 

  16. S. Horzum, H. Sahin, S. Cahangirov, P. Cudazzo, A. Rubio, T. Serin, and F.M. Peeters, Phys. Rev. B - Condens. Matter Mater. Phys. 87, 125415 (2013).

    Google Scholar 

  17. H. Shi, H. Pan, Y.W. Zhang, and B.I. Yakobson, Phys. Rev. B - Condens. Matter Mater. Phys. 87, 155304 (2013).

    Google Scholar 

  18. E. Scalise, M. Houssa, G. Pourtois, V. V. Afanas’ev, and A. Stesmans, Phys. E Low-Dimensional Syst. Nanostructures 56, 416 (2014).

    CAS  Google Scholar 

  19. C.H. Chang, X. Fan, S.H. Lin, and J.L. Kuo, Phys. Rev. B - Condens. Matter Mater. Phys. 88, 195420 (2013).

    Google Scholar 

  20. T. Li, Phys. Rev. B - Condens. Matter Mater. Phys. 85, 235407 (2012).

    Google Scholar 

  21. P. Johari and V.B. Shenoy, ACS Nano 6, 5449 (2012).

    CAS  Google Scholar 

  22. E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, and A. Stesmans, Nano Res. 5, 43 (2012).

    CAS  Google Scholar 

  23. K. He, C. Poole, K.F. Mak, and J. Shan, Nano Lett. 13, 2931 (2013).

    CAS  Google Scholar 

  24. H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund, S.T. Pantelides, and K.I. Bolotin, Nano Lett. 13, 3626 (2013).

    CAS  Google Scholar 

  25. H.J. Polland, K. Leo, K. Rother, K. Ploog, J. Feldmann, G. Peter, E.O. Göbel, K. Fujiwara, T. Nakayama, and Y. Ohta, Phys. Rev. B 38, 7635 (1988).

    CAS  Google Scholar 

  26. T.A. Klar, T. Franzl, A.L. Rogach, and J. Feldmann, Adv. Mater. 17, 769 (2005).

    CAS  Google Scholar 

  27. R. Schmidt, I. Niehues, R. Schneider, M. Drüppel, T. Deilmann, M. Rohlfing, S.M. De Vasconcellos, A. Castellanos-Gomez, and R. Bratschitsch, 2D Mater. 3, 021011 (2016).

    Google Scholar 

  28. G. Plechinger, A. Castellanos-Gomez, M. Buscema, H.S.J. Van Der Zant, G.A. Steele, A. Kuc, T. Heine, C. Schüller, and T. Korn, 2D Mater. 2, 015006 (2015).

    Google Scholar 

  29. R. Frisenda, M. Drüppel, R. Schmidt, S. Michaelis de Vasconcellos, D. Perez de Lara, R. Bratschitsch, M. Rohlfing, and A. Castellanos-Gomez, Npj 2D Mater. Appl. 1, 10 (2017).

    Google Scholar 

  30. Y.Y. Hui, X. Liu, W. Jie, N.Y. Chan, J. Hao, Y. Te Hsu, L.J. Li, W. Guo, and S.P. Lau, ACS Nano 7, 7126 (2013).

    CAS  Google Scholar 

  31. Z. Li, Y. Lv, L. Ren, J. Li, L. Kong, Y. Zeng, Q. Tao, R. Wu, H. Ma, B. Zhao, D. Wang, W. Dang, K. Chen, L. Liao, X. Duan, X. Duan, and Y. Liu, Nat. Commun. 11, 1 (2020).

    Google Scholar 

  32. H. Mei, C.M. Landis, and R. Huang, Mech. Mater. 43, 627 (2011).

    Google Scholar 

  33. Q. Wang and X. Zhao, Sci. Rep. 5, 1 (2015).

    Google Scholar 

  34. C.J. Brennan, J. Nguyen, E.T. Yu, and N. Lu, Adv. Mater. Interfaces 2, 1500176 (2015).

    Google Scholar 

  35. Q. Wang and X. Zhao, MRS Bull. 41, 115 (2016).

    CAS  Google Scholar 

  36. J. Feng, X. Qian, C.W. Huang, and J. Li, Nat. Photonics 6, 866 (2012).

    CAS  Google Scholar 

  37. A. Castellanos-Gomez, R. Roldán, E. Cappelluti, M. Buscema, F. Guinea, H.S.J. van der Zant, and G.A. Steele, Nano Lett. 13, 5361 (2013).

    CAS  Google Scholar 

  38. S. Yang, C. Wang, H. Sahin, H. Chen, Y. Li, S.S. Li, A. Suslu, F.M. Peeters, Q. Liu, J. Li, and S. Tongay, Nano Lett. 15, 1660 (2015).

    CAS  Google Scholar 

  39. K.P. Dhakal, S. Roy, H. Jang, X. Chen, W.S. Yun, H. Kim, J. Lee, J. Kim, and J.H. Ahn, Chem. Mater. 29, 5124 (2017).

    CAS  Google Scholar 

  40. Y. Wang, S. Yao, P. Liao, S. Jin, Q. Wang, M.J. Kim, G.J. Cheng, and W. Wu, Adv. Mater. 2002342 (2020).

  41. D. Vella, J. Bico, A. Boudaoud, B. Roman, and P.M. Reis, Proc. Natl. Acad. Sci. U. S. A. 106, 10901 (2009).

    CAS  Google Scholar 

  42. Q. Zhang and J. Yin, J. Mech. Phys. Solids 118, 40 (2018).

    Google Scholar 

  43. M.C. Wang, S. Chun, R.S. Han, A. Ashraf, P. Kang, and S. Nam, Nano Lett. 15, 1829 (2015).

    CAS  Google Scholar 

  44. W.-K. Lee, J. Kang, K.-S. Chen, C.J. Engel, W.-B. Jung, D. Rhee, M.C. Hersam, and T.W. Odom, Nano Lett. 16, 7121 (2016).

    CAS  Google Scholar 

  45. S. Deng, D. Rhee, W.K. Lee, S. Che, B. Keisham, V. Berry, and T.W. Odom, Nano Lett. 19, 5640 (2019).

    CAS  Google Scholar 

  46. M.C. Wang, J. Leem, P. Kang, J. Choi, P. Knapp, K. Yong, and S. Nam, 2D Mater. 4, 022002 (2017).

    Google Scholar 

  47. P.-Y. Chen, M. Liu, Z. Wang, R.H. Hurt, and I.Y. Wong, Adv. Mater. 29, 1605096 (2017).

    Google Scholar 

  48. J. Choi, H.J. Kim, M.C. Wang, J. Leem, W.P. King, and S. Nam, Nano Lett. 15, 4525 (2015).

    CAS  Google Scholar 

  49. A. Branny, S. Kumar, R. Proux, and B.D. Gerardot, Nat. Commun. 8, 1 (2017).

    Google Scholar 

  50. H. Li, A.W. Contryman, X. Qian, S.M. Ardakani, Y. Gong, X. Wang, J.M. Weisse, C.H. Lee, J. Zhao, P.M. Ajayan, J. Li, H.C. Manoharan, and X. Zheng, Nat. Commun. 6, 7381 (2015).

    CAS  Google Scholar 

  51. B. Pacakova, T. Verhagen, M. Bousa, U. Hübner, J. Vejpravova, M. Kalbac, and O. Frank, Sci. Rep. 7, 1 (2017).

    CAS  Google Scholar 

  52. Y. Zhang, M. Heiranian, B. Janicek, Z. Budrikis, S. Zapperi, P.Y. Huang, H.T. Johnson, N.R. Aluru, J.W. Lyding, and N. Mason, Nano Lett. 18, 2098 (2018).

    CAS  Google Scholar 

  53. A. Castellanos-Gomez, M. Poot, G.A. Steele, H.S.J. Van Der Zant, N. Agraït, and G. Rubio-Bollinger, Adv. Mater. 24, 772 (2012).

    CAS  Google Scholar 

  54. M.G. Harats, J.N. Kirchhof, M. Qiao, K. Greben, and K.I. Bolotin, Nat. Photonics 14, 324 (2020).

    CAS  Google Scholar 

  55. B.G. Shin, G.H. Han, S.J. Yun, H.M. Oh, J.J. Bae, Y.J. Song, C.-Y. Park, and Y.H. Lee, Adv. Mater. 28, 9378 (2016).

    CAS  Google Scholar 

  56. E. Blundo, M. Felici, T. Yildirim, G. Pettinari, D. Tedeschi, A. Miriametro, B. Liu, W. Ma, Y. Lu, and A. Polimeni, Phys. Rev. Res. 2, 012024 (2020).

    CAS  Google Scholar 

  57. D. Zhang, L. Gan, J. Zhang, R. Zhang, Z. Wang, J. Feng, H. Sun, and C.Z. Ning, ACS Nano 14, 6931 (2020).

    CAS  Google Scholar 

  58. A. V. Tyurnina, D.A. Bandurin, E. Khestanova, V.G. Kravets, M. Koperski, F. Guinea, A.N. Grigorenko, A.K. Geim, and I. V. Grigorieva, ACS Photonics 6, 516 (2019).

    CAS  Google Scholar 

  59. S. Deng, S. Che, R. Debbarma, and V. Berry, Nanoscale 11, 504 (2019).

    CAS  Google Scholar 

  60. P. San-Jose, V. Parente, F. Guinea, R. Roldán, and E. Prada, Phys. Rev. X 6, 031046 (2016).

    Google Scholar 

  61. A. De Sanctis, I. Amit, S.P. Hepplestone, M.F. Craciun, and S. Russo, Nat. Commun. 9, 1 (2018).

    Google Scholar 

  62. J. Leem, Y. Lee, M.C. Wang, J.M. Kim, J. Mun, M.F. Haque, S.-W. Kang, and S. Nam, 2D Mater. 6, 044001 (2019).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juyoung Leem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leem, J. A snapshot review on exciton engineering in deformed 2D materials. MRS Advances 5, 3491–3506 (2020). https://doi.org/10.1557/adv.2020.350

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.350

Navigation