Abstract
Nanoscale self-assembly, as a technique to transform two-dimensional (2D) planar patterns into three-dimensional (3D) nanoscale architectures, has achieved tremendous success in the past decade. However, an assembly process at nanoscale is easily affected by small unavoidable variations in sample conditions and reaction environment, resulting in a low yield. Recently, in-situ monitored self-assembly based on ion and electron irradiation has stood out as a promising candidate to overcome this limitation. The usage of ion and electron beam allows stress generation and real-time observation simultaneously, which significantly enhances the controllability of self-assembly. This enables the realization of various complex 3D nanostructures with a high yield. The additional dimension of the self-assembled 3D nanostructures opens the possibility to explore novel properties that cannot be demonstrated in 2D planar patterns. Here, we present a rapid review on the recent achievements and challenges in nanoscale self-assembly using electron and ion beam techniques, followed by a discussion of the novel optical properties achieved in the self-assembled 3D nanostructures.
Similar content being viewed by others
References
A. R. Jalil; H. Chang; V. K. Bandari; P. Robaschik; J. Zhang; P. F. Siles; G. Li; D. Bürger; D. Grimm; X. Liu Fully integrated organic nanocrystal diode as high performance room temperature NO2 sensor. Adv. Mater. 2016, 28, 2971–2977.
J. H. Cho; M. D. Keung; N. Verellen; L. Lagae; V. V. Moshchalkov; P. Van Dorpe; D. H. Gracias Nanoscale origami for 3D optics. Small 2011, 7, 1943–1948.
L. Zhang; J. J. Abbott; L. Dong; K. E. Peyer; B. E. Kratochvil; H. Zhang; C. Bergeles; B. J. Nelson Characterizing the swimming properties of artificial bacterial flagella. Nano Lett. 2009, 9, 3663–3667.
C. Dai; D. Joung; J. Cho Plasma triggered grain coalescence for self-assembly of 3D nanostructures. Nano-micro Lett. 2017, 9, 27.
N. T. Eigenfeld; J. M. Gray; J. J. Brown; G. D. Skidmore; S. M. George; V. M. Bright Ultra-thin 3D Nano-Devices from Atomic Layer Deposition on Polyimide. Adv. Mater. 2014, 26, 3962–3967.
K. Rykaczewski; O. J. Hildreth; C. P. Wong; A. G. Fedorov; J. H. J. Scott Guided three-dimensional catalyst folding during metal-assisted chemical etching of silicon. Nano letters 2011, 11, 2369–2374.
R. Songmuang; C. Deneke; O. Schmidt Rolled-up micro-and nanotubes from single-material thin films. Appl. Phys. Lett. 2006, 89, 223109.
K. Chalapat; N. Chekurov; H. Jiang; J. Li; B. Parviz; G. Paraoanu Self-Organized Origami Structures via Ion-Induced Plastic Strain. Adv. Mater. 2013, 25, 91–95.
Z. Jiang; J. He; S. A. Deshmukh; P. Kanjanaboos; G. Kamath; Y. Wang; S. K. Sankaranarayanan; J. Wang; H. M. Jaeger; X. Lin Subnanometre ligand-shell asymmetry leads to Janus-like nanoparticle membranes. Nat. Mater. 2015, 14, 912–917.
J. Liu; J. Xu; Y. Ni; F. Fan; C. Zhang; S. Yu A family of carbon-based nanocomposite tubular structures created by in situ electron beam irradiation. ACS Nano 2012, 6, 4500–4507.
C. Dai; L. Li; D. Wratkowski; J. Cho Electron Irradiation Driven Nanohands for Sequential Origami. Nano Lett. 2020, 20, 4975–4984.
C. Dai; J. Cho In situ monitored self-assembly of three-dimensional polyhedral nanostructures. Nano Lett. 2016, 16, 3655–3660.
C. Dai; K. Agarwal; J. Cho Ion-Induced Localized Nanoscale Polymer Reflow for Three-Dimensional Self-Assembly. ACS Nano 2018, 12, 10251–10261.
O. Supekar; J. Brown; N. Eigenfeld; J. Gertsch; V. Bright Atomic layer deposition ultrathin film origami using focused ion beams. Nanotechnology 2016, 27, 49LT02.
L. A. Giannuzzi; F. A. Stevie A review of focused ion beam milling techniques for TEM specimen preparation. Micron 1999, 30, 197–204.
Y. M. Park; D. Ko; K. Yi; I. Petrov; Y. Kim Measurement and estimation of temperature rise in TEM sample during ion milling. Ultramicroscopy 2007, 107, 663–668.
C. Wu; F. Li; C. Pao; D. J. Srolovitz Folding sheets with ion beams. Nano Lett. 2017, 17, 249–254.
Y. Mao; Y. Zheng; C. Li; L. Guo; Y. Pan; R. Zhu; J. Xu; W. Zhang; W. Wu Programmable bidirectional folding of metallic thin films for 3D chiral optical antennas. Adv. Mater. 2017, 29, 1606482.
J. H. Cho; D. H. Gracias Self-assembly of lithographically patterned nanoparticles. Nano Lett. 2009, 9, 4049–4052.
J. H. Cho; T. James; D. H. Gracias Curving nanostructures using extrinsic stress. Adv. Mater. 2010, 22, 2320–2324.
J. H. Cho; A. Azam; D. H. Gracias Three dimensional nanofabrication using surface forces. Langmuir 2010, 26, 16534–16539.
J. H. Cho; D. Datta; S. Y. Park; V. B. Shenoy; D. H. Gracias Plastic deformation drives wrinkling, saddling, and wedging of annular bilayer nanostructures. Nano Lett. 2010, 10, 5098–5102.
A. Seminara; B. Pokroy; S. H. Kang; M. P. Brenner; J. Aizenberg Mechanism of nanostructure movement under an electron beam and its application in patterning. Physical Review B 2011, 83, 235438.
N. S. Rajput; F. Le Marrec; M. El Marssi; M. Jouiad Fabrication and manipulation of nanopillars using electron induced excitation. J. Appl. Phys. 2018, 124, 074301.
T. Kim; H. E. Jeong; K. Y. Suh; H. H. Lee Stooped nanohairs: geometry-controllable, unidirectional, reversible, and robust gecko-like dry adhesive. Adv. Mater. 2009, 21, 2276–2281.
M. Zharnikov; M. Grunze Modification of thiol-derived self-assembling monolayers by electron and x-ray irradiation: Scientific and lithographic aspects. J. Vac. Sci. Technol. B 2002, 20, 1793–1807.
R. Pan; Z. Li; Z. Liu; W. Zhu; L. Zhu; Y. Li; S. Chen; C. Gu; J. Li Rapid Bending Origami in Micro/Nanoscale toward a Versatile 3D Metasurface. Laser Photonics Rev. 2020, 14, 1900179.
Y. Mao; Y. Pan; W. Zhang; R. Zhu; J. Xu; W. Wu Multi-direction-tunable three-dimensional meta-atoms for reversible switching between midwave and long-wave infrared regimes. Nano Lett. 2016, 16, 7025–7029.
Z. Liu; Z. Liu; J. Li; W. Li; J. Li; C. Gu; Z. Li 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials. Sci. Rep. 2016, 6, 1–8.
Z. Liu; S. Du; A. Cui; Z. Li; Y. Fan; S. Chen; W. Li; J. Li; C. Gu High-Quality-Factor Mid-Infrared Toroidal Excitation in Folded 3D Metamaterials. Adv. Mater. 2017, 29, 1606298.
X. Tian; Z. Liu; H. Lin; B. Jia; Z. Li; J. Li Five-fold plasmonic Fano resonances with giant bisignate circular dichroism. Nanoscale 2018, 10, 16630–16637.
S. Yang; Z. Liu; H. Yang; A. Jin; S. Zhang; J. Li; C. Gu Intrinsic Chirality and Multispectral Spin-Selective Transmission in Folded Eta-Shaped Metamaterials. Adv. Opt. Mater. 2020, 8, 1901448.
Z. Liu; H. Du; J. Li; L. Lu; Z. Li; N. X. Fang Nano-kirigami with giant optical chirality. Sci. Adv. 2018, 4, eaat4436.
Z. Liu; Y. Xu; C. Ji; S. Chen; X. Li; X. Zhang; Y. Yao; J. Li Fano-Enhanced Circular Dichroism in Deformable Stereo Metasurfaces. Adv. Mater. 2020, 32, 1907077.
K. J. Si; D. Sikdar; Chen, Y.; F. Eftekhari; Z. Xu; Y. Tang; W. Xiong; P. Guo; S. Zhang; Y. Lu Giant plasmene nanosheets, nanoribbons, and origami. ACS Nano 2014, 8, 11086–11093.
D. Joung; A. Nemilentsau; K. Agarwal; C. Dai; C. Liu; Q. Su; J. Li; T. Low; S. J. Koester; J. Cho Self-assembled three-dimensional graphene-based polyhedrons inducing volumetric light confinement. Nano Lett. 2017, 17, 1987–1994.
K. Agarwal; C. Dai; D. Joung; J. Cho Nano-Architecture Driven Plasmonic Field Enhancement in 3D Graphene Structures. ACS Nano 2018, 13, 1050–1059.
N. Papasimakis; V. Fedotov; V. Savinov; T. Raybould; N. Zheludev Electromagnetic toroidal excitations in matter and free space. Nat. Mater. 2016, 15, 263–271.
W. Xu; T. Li; Z. Qin; Q. Huang; H. Gao; K. Kang; J. Park; M.J. Buehler; J.B. Khurgin; D. H. Gracias Reversible MoS2 origami with spatially resolved and reconfigurable photosensitivity. Nano Lett. 2019, 19, 7941–7949.
J. S. Randhawa; M. D. Keung; P. Tyagi; D. H. Gracias Reversible actuation of microstructures by surface-chemical modification of thin-film bilayers. Adv. Mater. 2010, 22, 407–410.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Dai, C., Agarwal, K. & Cho, JH. Nanoscale Self-Assembly Using Ion and Electron Beam Techniques: A Rapid Review. MRS Advances 5, 3507–3520 (2020). https://doi.org/10.1557/adv.2020.349
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2020.349