Skip to main content
Log in

Wireless nanotechnologies light up the next frontier in cell Calcium signalling

  • Snapshot Review
  • Published:
MRS Advances Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Calcium ions impact nearly every aspect of cellular life, playing crucial roles as secondary messengers in regulation of neurotransmission, cell proliferation, migration and differentiation processes, intracellular homeostasis, long-distance signal propagation and stimuli physiological response. Despite its key-role, available techniques to study and selectively regulate Ca2+ signalling largely rely on chemical and electrical approaches, which often cannot ensure the necessary spatial and temporal resolution, specificity, modulation and reversal capability. In this context, Ca2+ modulation based on physical stimuli, such as magnetic, mechanical and optical tools, are emerging ass promising innovative solutions. Here, we focus our attention on a subclass of these approaches, namely wireless-activated techniques, and on functional materials able to act as non-invasive transduction elements. We present an overview of most recent outcomes in the field, and we critically evaluate their advantages and drawbacks. This work is mainly directed to the material science community, but hopefully it will provide a useful perspective also to the broader readership of biotechnologists, physiologists and clinicians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Berridge, P. Lipp, and M. D. Bootman, “The versatility and universality of calcium signalling,” Nature Reviews Molecular Cell Biology, vol. 1, no. 1. European Association for Cardio-Thoracic Surgery, pp. 11–21, 2000.

    Article  CAS  Google Scholar 

  2. D. E. Clapham, “Calcium Signaling,” Cell, vol. 131, no. 6. pp. 1047–1058, 2007.

    Article  CAS  Google Scholar 

  3. M. R. Antognazza, I. Abdel Aziz, and F. Lodola, “Use of exogenous and endogenous photomediators as efficient ROS modulation tools: Results and perspectives for therapeutic purposes,” Oxid. Med. Cell. Longev., vol. 2019, 2019.

  4. G. Romero, M. G. Christiansen, L. Stocche Barbosa, F. Garcia, and P. Anikeeva, “Localized Excitation of Neural Activity via Rapid Magnetothermal Drug Release,” Adv. Funct. Mater., vol. 26, no. 35, pp. 6471–6478, 2016.

    Article  CAS  Google Scholar 

  5. R. Munshi, S. M. Qadri, Q. Zhang, I. C. Rubio, P. del Pino, and A. Pralle, “Magnetothermal genetic deep brain stimulation of motor behaviors in awake, freely moving mice,” Elife, vol. 6, pp. 1–26, 2017.

    Article  Google Scholar 

  6. R. Munshi, S. M. Qadri, and A. Pralle, “Transient magnetothermal neuronal silencing using the chloride channel anoctamin 1 (TMEM16A),” Front. Neurosci., vol. 12, no. AUG, pp. 1–13, 2018.

    Article  Google Scholar 

  7. D. Rosenfeld et al., “Transgene-free remote magnetothermal regulation of adrenal hormones,” Sci. Adv., vol. 6, no. 15, pp. 1–12, 2020.

    Article  Google Scholar 

  8. A. Tay, A. Kunze, C. Murray, and D. Di Carlo, “Induction of Calcium Influx in Cortical Neural Networks by Nanomagnetic Forces,” ACS Nano, vol. 10, no. 2, pp. 2331–2341, 2016.

    Article  CAS  Google Scholar 

  9. A. Tay and D. Di Carlo, “Magnetic Nanoparticle-Based Mechanical Stimulation for Restoration of Mechano-Sensitive Ion Channel Equilibrium in Neural Networks,” Nano Lett., vol. 17, no. 2, pp. 886–892, 2017.

    Article  CAS  Google Scholar 

  10. I. M. Suarez Castellanos, B. Balteanu, T. Singh, and V. Zderic, “Therapeutic modulation of calcium dynamics using ultrasound and other energy-based techniques,” IEEE Rev. Biomed. Eng., vol. 9, no. November, pp. 177–191, 2016.

    Article  Google Scholar 

  11. B. Tandon, J. J. Blaker, and S. H. Cartmell, “Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair,” Acta Biomater., vol. 73, pp. 1–20, 2018.

    Article  CAS  Google Scholar 

  12. G. Ciofani et al., “Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation,” ACS Nano, vol. 4, no. 10, pp. 6267–6277, Oct. 2010.

    Article  CAS  Google Scholar 

  13. S. Danti et al., “Boron nitride nanotube-functionalised myoblast/microfibre constructs: A nanotech-assisted tissue-engineered platform for muscle stimulation,” J. Tissue Eng. Regen. Med., vol. 9, no. 7, pp. 847–851, Jul. 2015.

    Article  CAS  Google Scholar 

  14. A. Marino et al., “Piezoelectric Nanoparticle-Assisted Wireless Neuronal Stimulation,” ACS Nano, vol. 9, no. 7, pp. 7678–7689, 2015.

    Article  CAS  Google Scholar 

  15. Y.-S. Lee, S. Wu, T. L. Arinzeh, and M. B. Bunge, “Enhanced noradrenergic axon regeneration into schwann cell-filled PVDF-TrFE conduits after complete spinal cord transection,” Biotechnol. Bioeng., vol. 114, no. 2, pp. 444–456, Feb. 2017.

    Article  CAS  Google Scholar 

  16. A. Marino et al., “Piezoelectric barium titanate nanostimulators for the treatment of glioblastoma multiforme,” J. Colloid Interface Sci., vol. 538, pp. 449–461, 2019.

    Article  CAS  Google Scholar 

  17. G. Murillo et al., “Electromechanical Nanogenerator–Cell Interaction Modulates Cell Activity,” Adv. Mater., vol. 29, no. 24, pp. 1–7, 2017.

    Google Scholar 

  18. G. Ma, S. Wen, L. He, Y. Huang, Y. Wang, and Y. Zhou, “Optogenetic toolkit for precise control of calcium signaling,” Cell Calcium, vol. 64. Elsevier Ltd, pp. 36–46, 01-Jun-2017.

  19. D. H. and Y. J. Bozhi Tian, Shuai Xu, John A Rogers, Stefano Cestellos-Blanco, Peidong Yang, Joao L Carvalho-de-Souza, Francisco Bezanilla, Jia Liu, Zhenan Bao, Martino Hjort, Yuhong Cao, Nicholas Melosh, Guglielmo Lanzani, Fabio Benfenati, Giulia Galli, Francois Gygi, R, “Roadmap on semiconductor–cell biointerfaces,” Phys. Biol., vol. 15, no. 031002, 2018.

  20. I. A. Aziz, M. Malferrari, F. Roggiani, G. Tullii, S. Rapino, and M. R. Antognazza, “Journal Pre-proof Light Triggered Electron Transfer between a Conjugated Polymer and Cytochrome C for Optical Modulation of Redox Signalling,” ISCIENCE, p. 101091, 2020.

  21. M. Gryszel and E. D. Głowacki, “Organic thin film photofaradaic pixels for on-demand electrochemistry in physiological conditions,” Chem. Commun., vol. 56, no. 11, pp. 1705–1708, 2020.

    Article  CAS  Google Scholar 

  22. R. Parameswaran et al., “Optical stimulation of cardiac cells with a polymer-supported silicon nanowire matrix,” Proc. Natl. Acad. Sci. U. S. A., vol. 116, no. 2, pp. 413–421, 2019.

    Article  CAS  Google Scholar 

  23. M. Y. Rotenberg et al., “Silicon Nanowires for Intracellular Optical Interrogation with Subcellular Resolution,” Nano Lett., vol. 20, no. 2, pp. 1226–1232, 2020.

    Article  CAS  Google Scholar 

  24. S. P. Sanchez-Rodriguez et al., “Plasmonic activation of gold nanorods for remote stimulation of calcium signaling and protein expression in HEK 293T cells,” Biotechnol. Bioeng., vol. 113, no. 10, pp. 2228–2240, 2016.

    Article  CAS  Google Scholar 

  25. W. Gao et al., “Copper sulfide nanoparticles as a photothermal switch for TRPV1 signaling to attenuate atherosclerosis,” Nat. Commun., vol. 9, no. 1, pp. 1–10, 2018.

    Article  Google Scholar 

  26. Z. Ma et al., “Intracellular Ca2+ Cascade Guided by NIR-II Photothermal Switch for Specific Tumor Therapy,” iScience, vol. 23, no. 5, p. 101049, 2020.

    Article  CAS  Google Scholar 

  27. C. Bossio et al., “Photocatalytic activity of polymer nanoparticles modulates intracellular calcium dynamics and reactive oxygen species in HEK-293 cells,” Front. Bioeng. Biotechnol., vol. 6, no. AUG, 2018.

  28. Y. Wu et al., “Photoconductive Micro/Nanoscale Interfaces of a Semiconducting Polymer for Wireless Stimulation of Neuron-Like Cells,” ACS Appl. Mater. Interfaces, vol. 11, no. 5, pp. 4833–4841, 2019.

    Article  CAS  Google Scholar 

  29. D. Rand et al., “Direct Electrical Neurostimulation with Organic Pigment Photocapacitors,” Adv. Mater., vol. 30, no. 25, pp. 1–11, 2018.

    Google Scholar 

  30. Y. Lyu, C. Xie, S. A. Chechetka, E. Miyako, and K. Pu, “Semiconducting Polymer Nanobioconjugates for Targeted Photothermal Activation of Neurons,” J. Am. Chem. Soc., vol. 138, pp. 9049–9052, 2016.

    Article  CAS  Google Scholar 

  31. Y. Jiang and K. Pu, “Multimodal Biophotonics of Semiconducting Polymer Nanoparticles,” Acc. Chem. Res., vol. 51, pp. 1840–1849, 2018.

    Article  CAS  Google Scholar 

  32. E. Miyako et al., “Photofunctional nanomodulators for bioexcitation,” Angew. Chemie - Int. Ed., vol. 53, no. 48, pp. 13121–13125, 2014.

    Article  CAS  Google Scholar 

  33. E. C. Carroll et al., “Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics,” Proc. Natl. Acad. Sci. U. S. A., vol. 112, no. 7, pp. E776–E785, 2015.

    Article  CAS  Google Scholar 

  34. G. Cabré et al., “Rationally designed azobenzene photoswitches for efficient two-photon neuronal excitation,” Nat. Commun., vol. 10, no. 1, 2019.

  35. T. Fehrentz et al., “Optical control of L-type Ca 2+ channels using a diltiazem photoswitch,” Nat. Chem. Biol., vol. 14, no. 8, pp. 764–767, 2018.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilaria Abdel Aziz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, I.A., Antognazza, M.R. Wireless nanotechnologies light up the next frontier in cell Calcium signalling. MRS Advances 5, 3473–3489 (2020). https://doi.org/10.1557/adv.2020.348

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.348

Navigation