Skip to main content
Log in

High Temperature Organic Electronics

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The emerging breakthroughs in space exploration, smart textiles, and novel automobile designs have increased technological demand for high temperature electronics. In this snapshot review we first discuss the fundamental challenges in achieving electronic operation at elevated temperatures, briefly review current efforts in finding materials that can sustain extreme heat, and then highlight the emergence of organic semiconductors as a new class of materials with potential for high temperature electronics applications. Through an overview of the state-of-the art materials designs and processing methods, we will layout molecular design principles and fabrication strategies towards achieving thermally stable operation in organic electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Hunt, A. Tooke, in 18th Eur. Microelectron. Pack. Conf., 2011, pp. 1–5.

    Google Scholar 

  2. J. Watson, G. Castro, J. Mater. Sci. Mater. Electron 2015, 26, 9226–9235.

    Article  CAS  Google Scholar 

  3. W. Wondrak, Microelectron. Reliab. 1999, 39, 1113–1120.

    Article  Google Scholar 

  4. S. M. Sze, Physics of semiconductor devices, 3rd ed., Hoboken, N.J.: Wiley-Interscience, 2007.

    Google Scholar 

  5. P. G. Neudeck, R. S. Okojie, C. Liang-Yu, Proc. IEEE 2002, 90, 1065–1076.

    Article  Google Scholar 

  6. T. P. Chow, R. Tyagi, IEEE Trans. Electron. Devices 1994, 41, 1481–1483.

    Article  CAS  Google Scholar 

  7. P. G. Neudeck, D. J. Spry, L. Y. Chen, G. M. Beheim, R. S. Okojie, C. W. Chang, R. D. Meredith, T. L. Ferrier, L. J. Evans, M. J. Krasowski, N. F. Prokop, IEEE Electron. Device Lett. 2008, 29, 456–459.

    Article  CAS  Google Scholar 

  8. V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, J.-L. Brédas, Chem. Rev. 2007, 107, 926–952.

    Article  CAS  Google Scholar 

  9. K. Lee Eun, Y. Lee Moo, H. Park Cheol, R. Lee Hae, H. Oh Joon, Adv. Mater. 2017, 29, 1703638.

    Article  Google Scholar 

  10. S. Martin, F. M. J. L. Mingqi, K. K. Moo, T. Peter, B. G. C., Adv. Mater. 2017, 29, 1605511.

    Article  Google Scholar 

  11. T. Sekitani, S. Iba, Y. Kato, T. Someya, Appl. Phys. Lett. 2004, 85, 3902–3904.

    Article  CAS  Google Scholar 

  12. C. Jihua, T. C. Keong, Y. Junyan, S. Charles, S. Max, A. John, M. D. C., J. Poly. Sci. Part B: Poly. Physics 2006, 44, 3631–3641.

    Article  Google Scholar 

  13. J. T. Kintigh, J. L. Hodgson, A. Singh, C. Pramanik, A. M. Larson, L. Zhou, J. B. Briggs, B. C. Noll, E. Kheirkhahi, K. Pohl, N. E. McGruer, G. P. Miller, J. Phys. Chem. C 2014, 118, 26955–26963.

    Article  CAS  Google Scholar 

  14. M. Abe, T. Mori, I. Osaka, K. Sugimoto, K. Takimiya, Chem. Mater. 2015, 27, 5049–5057.

    Article  CAS  Google Scholar 

  15. J.-I. Park, J. W. Chung, J.-Y. Kim, J. Lee, J. Y. Jung, B. Koo, B.-L. Lee, S. W. Lee, Y. W. Jin, S. Y. Lee, J. Am. Chem. Soc. 2015, 137, 12175–12178.

    Article  CAS  Google Scholar 

  16. Y. Tomoyuki, K. Kazunori, T. Takeyoshi, Z. Ute, K. Hagen, T. Kazuo, S. Yuji, H. Masahiro, S. Tsuyoshi, S. Takao, Adv. Mater. 2013, 25, 3639–3644.

    Article  Google Scholar 

  17. Y. Dong, Y. Guo, H. Zhang, Y. Shi, J. Zhang, H. Li, J. Liu, X. Lu, Y. Yi, T. Li, W. Hu, L. Jiang, Front. Chem. 2019, 7.

  18. C. Arnold Jr., J. Polym. Sci. Macromol. Rev. 1979, 14, 265–378.

    Article  CAS  Google Scholar 

  19. R. Noriega, J. Rivnay, K. Vandewal, F. P. V. Koch, N. Stingelin, P. Smith, M. F. Toney, A. Salleo, Nat. Mater. 2013, 12, 1038–1044.

    Article  CAS  Google Scholar 

  20. A. Gumyusenge, X. Zhao, Y. Zhao, J. Mei, ACS Appl. Mater. Interfaces 2018, 10, 4904–4909.

    Article  CAS  Google Scholar 

  21. Y. Zhao, X. Zhao, M. Roders, A. Gumyusenge, A. L. Ayzner, J. Mei, Adv. Mater. 2017, 29, 1605056.

    Article  Google Scholar 

  22. A. Gumyusenge, D. T. Tran, X. Luo, G. M. Pitch, Y. Zhao, K. A. Jenkins, T. J. Dunn, A. L. Ayzner, B. M. Savoie, J. Mei, Science 2018, 362, 1131–1134.

    Article  CAS  Google Scholar 

  23. K. Avinesh, B. M. A.S. Ken, K. Theo, S. S. Natalie, Adv. Mater. 2009, 21, 4447–4451.

    Article  Google Scholar 

  24. S. Goffri, C. Müller, N. Stingelin-Stutzmann, D. W. Breiby, C. P. Radano, J. W. Andreasen, R. Thompson, R. A. J. Janssen, M. M. Nielsen, P. Smith, H. Sirringhaus, Nat. Mater. 2006, 5, 950.

    Article  CAS  Google Scholar 

  25. Y. Lei, P. Deng, M. Lin, X. Zheng, F. Zhu, B. S. Ong, Adv. Mater. 2016, 28, 6687–6694.

    Article  CAS  Google Scholar 

  26. Y. Lei, P. Deng, J. Li, M. Lin, F. Zhu, T.-W. Ng, C.-S. Lee, B. S. Ong, Sci. Rep. 2016, 6, 24476.

    Article  CAS  Google Scholar 

  27. D.-J. Liaw, K.-L. Wang, Y.-C. Huang, K.-R. Lee, J.-Y. Lai, C.-S. Ha, Prog. Poly. Sci. 2012, 37, 907–974.

    Article  CAS  Google Scholar 

  28. D. Ji, T. Li, W. Hu, H. Fuchs, Adv. Mater. 2019, 31, 1806070.

    Article  Google Scholar 

  29. A. Gumyusenge, X. Luo, Z. Ke, D. T. Tran, J. Mei, ACS Mater. Lett. 2019, 1, 154–157.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gumyusenge, A., Mei, J. High Temperature Organic Electronics. MRS Advances 5, 505–513 (2020). https://doi.org/10.1557/adv.2020.31

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.31

Navigation