Skip to main content

Advertisement

Log in

Cadmium Sulphide Sensitized Crystal Facet Tailored Nanostructured Nickel Ferrite @ Hematite Core-Shell Ternary Heterojunction Photoanode for Photoelectrochemical Water Splitting

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Design of composite semiconductor nanostructures with proper band alignment for efficient charge separation and carrier transport has been at the center of research for photoelectrochemical water splitting. This work demonstrates the deposition of a NiFe2O4 @Fe2O3 core-shell nanostructured film sensitized with CdS to form a ternary heterojunction for cascade type electron transfer. The hematite nanostructures were grown by hydrothermal approach through dipping into a solution of Nickel Nitrate yielded anchoring of Ni2+ ions on the outer surface. The films were then annealed at 650 °C for the diffusion of Ni2+ ions into the hematite lattice which forms core-shell NiFe2O4 @Fe2O3 heterojunction. The films were further sensitized with CdS nanoparticles deposited by a hydrothermal approach to form the final ternary heterojunction photoanode. Several different nanostructures were grown and the effect of crystal facet tailoring was observed on Ni loading and photoelectrochemical performance. The photoelectrochemical measurements were carried out using a potentiostat under 100 mW/cm2 light source (150W Xenon Lamp) with Pt counter electrode and 0.5 M Na2S and 0.5 M Na2SO3 electrolyte. A current density of 3.47 mA/cm2 was observed at 1.23 V (vs Ag/AgCl). An Applied Bias to Photocurrent Efficiency (ABPE) of 1.8 % photoconversion efficiency was observed using the fabricated electrodes at 0.288V (vs Ag/AgCl).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima and K. Honda, Nature 238, 38 (1972).

    Article  Google Scholar 

  2. A.B. Murphy, P.R.F. Barnes, L.K. Randeniya, I.C. Plumb, I.E. Grey, M.D. Horne, and J.A. Glasscock, Int. J. Hydrogen Energy 31, 1999 (2006).

    Article  CAS  Google Scholar 

  3. O. Khaselev and J.A. Turner, Science (80). 280, 425 (1998).

    Article  CAS  Google Scholar 

  4. M.E.A. Warwick, K. Kaunisto, D. Barreca, G. Carraro, A. Gasparotto, C. Maccato, E. Bontempi, C. Sada, T.P. Ruoko, S. Turner, and G. Van Tendeloo, ACS Appl. Mater. Interfaces 7, 8667 (2015).

    Article  CAS  Google Scholar 

  5. M. Marelli, A. Naldoni, A. Minguzzi, M. Allieta, T. Virgili, G. Scavia, S. Recchia, R. Psaro, and V. Dal Santo, ACS Appl. Mater. Interfaces 6, 11997 (2014).

    Article  CAS  Google Scholar 

  6. M. Cornuz, M. Grätzel, and K. Sivula, Chem. Vap. Depos. 16, 291 (2010).

    Article  CAS  Google Scholar 

  7. R. Dillert, D.H. Taffa, M. Wark, T. Bredow, and D.W. Bahnemann, APL Mater. 3, (2015).

  8. Y. Yin, X. Zhang, and C. Sun, Prog. Nat. Sci. Mater. Int. 28, 430 (2018).

    Article  CAS  Google Scholar 

  9. S. Hussain, M.M. Tavakoli, A. Waleed, U.S. Virk, S. Yang, A. Waseem, Z. Fan, and M.A. Nadeem, Langmuir 34, 3555 (2018).

    Article  CAS  Google Scholar 

  10. K.J. McDonald and K.S. Choi, Chem. Mater. 23, 4863 (2011).

    Article  CAS  Google Scholar 

  11. Y. Shi, H. Li, L. Wang, W. Shen, and H. Chen, ACS Appl. Mater. Interfaces 4, 4800 (2012).

    Article  CAS  Google Scholar 

  12. K. Natarajan, M. Saraf, and S.M. Mobin, (2017).

  13. M.A. Mahadik, A. Subramanian, J. Ryu, M. Cho, and J.S. Jang, Dalt. Trans. 46, 2377 (2017).

    Article  CAS  Google Scholar 

  14. N.M. Abdul Rashid, C. Haw, W. Chiu, N.H. Khanis, A. Rohaizad, P. Khiew, and S. Abdul Rahman, CrystEngComm 18, 4720 (2016).

    Article  Google Scholar 

  15. O. Nife, B.S. Holinsworth, D. Mazumdar, H. Sims, Q. Sun, M.K. Yurtisigi, S.K. Sarker, A. Gupta, W.H. Butler, and J.L. Musfeldt, Appl. Phys. Lett. 082406, 2 (2013).

    Google Scholar 

  16. P. Sharma, J.W. Jang, and J.S. Lee, ChemCatChem 11, 157 (2019).

    Article  CAS  Google Scholar 

  17. S. Roy and G.G. Botte, RSC Adv. 8, 5388 (2018).

    Article  CAS  Google Scholar 

  18. W.-M. Shen and J. Electrochem. Soc. 133, 107 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants funded by the department of science, and technology (DST) under the scheme “innovation, technology development, and Deployment” Central, Government of India through mission innovation program DST(DST/TMD(EWO)/IC5-2018/06(G)). Authors Arundhati Sarkar and Kajari Kargupta are grateful to DST-SERB for the financial assistance (DST-SERB project no. EMR/2017/005304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhasis Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maitra, S., Sarkar, A., Maitra, T. et al. Cadmium Sulphide Sensitized Crystal Facet Tailored Nanostructured Nickel Ferrite @ Hematite Core-Shell Ternary Heterojunction Photoanode for Photoelectrochemical Water Splitting. MRS Advances 5, 2585–2593 (2020). https://doi.org/10.1557/adv.2020.316

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.316

Navigation