Skip to main content

Advertisement

Log in

Spectral shifts upon halide segregation in perovskite nanocrystals observed via transient absorption spectroscopy

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Lead halide perovskite nanocrystals (NCs) are promising for applications in light emitting devices owing to a strong emission spectrum that is tunable throughout the visible region by altering halide composition. However, in mixed-halide perovskite systems photoinduced migration drives formation of halide-segregated domains, altering the emission spectrum. The mechanism by which this segregation occurs is currently the subject of intense investigation. Processes involving the perovskite surface are expected to be of enhanced prevalence in NCs due to their large surface area to volume ratio. In this work, we use transient absorption spectroscopy to probe the excited-state dynamics of NCs before and after halide segregation. Comparison of global fit spectra of the measured signals suggests the accumulation of iodide at the surface, resulting in a redshifted emission spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. C. Schmidt, A. Pertegás, S. González-Carrero, O. Malinkiewicz, S. Agouram, G. Mínguez Espallargas, H.J. Bolink, R.E. Galian, and J. Pérez-Prieto, J. Am. Chem. Soc. 136 (3), 850–853 (2014).

    Article  CAS  Google Scholar 

  2. L. Wang, N.E. Williams, E.W. Malachosky, J.P. Otto, D. Hayes, R.E. Wood, P. Guyot-Sionnest, and G.S. Engel, ACS Nano 11 (3), 2689–2696 (2017).

    Article  CAS  Google Scholar 

  3. L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, and M.V. Kovalenko, Nano Lett. 15 (6), 3692–3696 (2015).

    Article  CAS  Google Scholar 

  4. W. Deng, X. Xu, X. Zhang, Y. Zhang, X. Jin, L. Wang, S.-T. Lee, and J. Jie, Advanced Functional Materials 26 (26), 4797–4802 (2016).

    Article  CAS  Google Scholar 

  5. F. Zhang, H. Zhong, C. Chen, X. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, ACS Nano 9 (4), 4533–4542 (2015).

    Article  CAS  Google Scholar 

  6. Y. Hassan, O.J. Ashton, J.H. Park, G. Li, N. Sakai, B. Wenger, A.A. Haghighirad, N.K. Noel, M.H. Song, B.R. Lee, R.H. Friend, and H.J. Snaith, J. Am. Chem. Soc. 141 (3), 1269–1279 (2019).

    Article  CAS  Google Scholar 

  7. C.G. Bischak, C.L. Hetherington, H. Wu, S. Aloni, D.F. Ogletree, D.T. Limmer, and N.S. Ginsberg, Nano Lett. 17 (2), 1028–1033 (2017).

    Article  CAS  Google Scholar 

  8. E. T. Hoke, D.J. Slotcavage, E.R. Dohner, A.R. Bowring, H.I. Karunadasa, and M.D. McGehee, Chem. Sci. 6, 613–617 (2015).

    Article  CAS  Google Scholar 

  9. A.J. Barker, A. Sadhanala, F. Deschler, M. Gandini, S.P. Senanayak, P.M. Pearce, E. Mosconi, A.J. Pearson, Y. Wu, A.R.S. Kandada, T. Leijtens, F. De Angelis, S.E. Dutton, A. Petrozza, and R.H. Friend, ACS Energy Lett. 2 (6), 1416–1424 (2017).

    Article  CAS  Google Scholar 

  10. S. Draguta, O. Sharia, S.J. Yoon, M.C. Brennan, Y.V. Morozov, J.S. Manser, P.V. Kamat, W.F. Schneider, and M. Kuno, Nat. Commun. 8, 200 (2017).

    Article  Google Scholar 

  11. R. A. Belisle, K.A. Bush, L. Bertoluzzi, A. Gold-Parker, M.F. Toney, and M.D. McGehee, ACS Energy Lett. 3 (11), 2694–2700 (2018).

    Article  CAS  Google Scholar 

  12. A. J. Knight, A.D. Wright, J.B. Patel, D.P. McMeekin, H.J. Snaith, M.B. Johnston, and L.M. Herz, ACS Energy Lett. 4 (1), 75–84 (2019).

    Article  CAS  Google Scholar 

  13. W. Huang, S.J. Yoon, and P. Sapkota, ACS Appl. Energy Mater. 1 (6), 2859–2865 (2018).

    Article  CAS  Google Scholar 

  14. T. Elmelund, B. Seger, M. Kuno, and P.V. Kamat, ACS Energy Lett. 5 (1), 56–63 (2020).

    Article  CAS  Google Scholar 

  15. S. J. Yoon, M. Kuno, and P.V. Kamat, ACS Energy Lett. 2 (7), 1507–1514 (2017).

    Article  CAS  Google Scholar 

  16. D. Meggiolaro, E. Mosconi, and F. De Angelis, ACS Energy Lett. 4 (3), 779–785 (2019).

    Article  CAS  Google Scholar 

  17. F. Brivio, C. Caetano, and A. Walsh, J. Phys. Chem. Lett. 7 (6), 1083–1087 (2016).

    Article  CAS  Google Scholar 

  18. S. J. Yoon, S. Draguta, J.S. Manser, O. Sharia, W.F. Schneider, M. Kuno, and P.V. Kamat, ACS Energy Lett. 1 (1), 290–296 (2016).

    Article  CAS  Google Scholar 

  19. L. J. G. W. van Wilderen, C. N. Lincoln, and J. J. van Thor, PLoS ONE 6 (3), e17373 (2011).

    Article  Google Scholar 

  20. F. Ambrosio, D. Meggiolaro, E. Mosconi, and F. De Angelis, J. Mater. Chem. A 8, 6882–6892 (2020).

    Article  CAS  Google Scholar 

  21. J. H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, and S.I. Seok, Nano Lett. 13 (4), 1764–1769 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MLC acknowledges financial support from ARCS Oregon Chapter. This work was partially funded by the Engineering and Physical Sciences Research Council (EPSRC) UK through Grants EP/M005143/1 and EP/M015254/2. The authors thank Aditya Sadhalana (Clarendon Laboratory, Department of Physics, University of Oxford and Cavendish Laboratory, University of Cambridge) for assistance with sample preparation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crawford, M.L., Sadighian, J.C., Hassan, Y. et al. Spectral shifts upon halide segregation in perovskite nanocrystals observed via transient absorption spectroscopy. MRS Advances 5, 2613–2621 (2020). https://doi.org/10.1557/adv.2020.307

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.307

Navigation