Skip to main content

Advertisement

Log in

Nickel-Infused Nanoporous Alumina as Tunable Solar Absorber

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Solar energy can alleviate our dependence on traditional energy sources like coal and petroleum. In this regard, the design and performance of solar absorbers are crucial for capturing energy from sunlight. Specifically, for applications relying on solar-thermal energy conversion, it is desirable to construct solar absorbers using scalable techniques that also allow a variation in optical properties. In this study, we demonstrate the ability to tune the spectral absorptance of nickel-infused nanoporous alumina using a scalable and inexpensive fabrication procedure. With simple variations in the geometry of the nanostructures, we enable broadband absorption with a net solar absorptance of 0.96 and thermal emittance of 0.98 and spectrally-selective absorption with a net solar absorptance of 0.83 and thermal emittance of 0.22. The simple manufacturing techniques presented in this study to generate nanoengineered surfaces can lead to further advancements in solar absorbers with well-controlled and application-specific optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Liu, H. Song, D. Ji, C. Li, A. Cheney, Y. Liu, N. Zhang, X. Zeng, B. Chen, J. Gao, Y. Li, X. Liu, D. Aga, S. Jiang, Z. Yu, and Q. Gan, Glob. Challenges 1, 1600003 (2017).

    Article  Google Scholar 

  2. P.D. Dongare, A. Alabastri, O. Neumann, P. Nordlander, and N.J. Halas, Proc. Natl. Acad. Sci. 116, 13182 (2019).

    Article  CAS  Google Scholar 

  3. P.D. Dongare, A. Alabastri, S. Pedersen, K.R. Zodrow, N.J. Hogan, O. Neumann, J. Wu, T. Wang, A. Deshmukh, M. Elimelech, Q. Li, P. Nordlander, and NJ. Halas, Proc. Natl. Acad. Sci. 114, 6936 (2017).

    Article  CAS  Google Scholar 

  4. Y. Kuang, C. Chen, S. He, E.M. Hitz, Y. Wang, W. Gan, R. Mi, and L. Hu, Adv. Mater. 31, 1900498 (2019).

    Article  Google Scholar 

  5. V. Kashyap, A. Al-Bayati, S.M. Sajadi, P. Irajizad, S.H. Wang, and H. Ghasemi, J. Mater. Chem. A 5, 15227 (2017).

    Article  CAS  Google Scholar 

  6. P. Zhang, Q. Liao, H. Yao, H. Cheng, Y. Huang, C. Yang, L. Jiang, and L. Qu, J. Mater. Chem. A 6, 15303 (2018).

    Article  CAS  Google Scholar 

  7. X. Li, W. Xu, M. Tang, L. Zhou, B. Zhu, S. Zhu, and J. Zhu, Proc. Natl. Acad. Sci. 113, 13953 (2016).

    Article  CAS  Google Scholar 

  8. L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and J. Zhu, Nat. Photonics 10, 393 (2016).

    Article  CAS  Google Scholar 

  9. L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, Sci. Adv. 2, e1501227 (2016).

    Article  Google Scholar 

  10. Y. Li, C. Lin, D. Zhou, Y. An, D. Li, C. Chi, H. Huang, S. Yang, C.Y. Tso, C.Y.H. Chao, and B. Huang, Nano Energy 64, 103947 (2019).

    Article  CAS  Google Scholar 

  11. F. Cao, D. Kraemer, L. Tang, Y. Li, A.P. Litvinchuk, J. Bao, G. Chen, and Z. Ren, Energy Environ. Sci. 8, 3040 (2015).

    Article  CAS  Google Scholar 

  12. F. Cao, K. McEnaney, G. Chen, and Z. Ren, Energy Environ. Sci. 7, 1615 (2014).

    Article  CAS  Google Scholar 

  13. Y. Li, D. Li, D. Zhou, C. Chi, S. Yang, and B. Huang, Sol. RRL 2, 1800057 (2018).

    Article  Google Scholar 

  14. I.E. Khodasevych, L. Wang, A. Mitchell, and G. Rosengarten, Adv. Opt. Mater. 3, 852 (2015).

    Article  CAS  Google Scholar 

  15. G. Ni, G. Li, S. V. Boriskina, H. Li, W. Yang, T. Zhang, and G. Chen, Nat. Energy 1, 16126 (2016).

  16. T.A. Cooper, S.H. Zandavi, G.W. Ni, Y. Tsurimaki, Y. Huang, S.V. Boriskina, and G. Chen, Nat. Commun. 9, 1 (2018).

    Article  CAS  Google Scholar 

  17. Y. Li, J. Hao, H. Song, F. Zhang, X. Bai, X. Meng, H. Zhang, S. Wang, Y. Hu, and J. Ye, Nat. Commun. 10, 2359 (2019).

    Article  Google Scholar 

  18. X. Wang, M.-L. Hsieh, J.A. Bur, S.-Y. Lin, and S. Narayanan, Mater. Today Energy 17, 100453 (2020).

    Article  Google Scholar 

  19. K. Nielsch, F. Müller, A.-P. Li, and U. Gösele, Adv. Mater. 12, 582 (2000).

    Article  CAS  Google Scholar 

  20. C.T. Sousa, D.C. Leitao, M.P. Proenca, J. Ventura, A.M. Pereira, and J.P. Araujo, Appl. Phys. Rev. 1, (2014).

  21. H.M. Qiblawey and F. Banat, Desalination 220, 633 (2008).

    Article  CAS  Google Scholar 

  22. E. Hu, Y.P. Yang, A. Nishimura, F. Yilmaz, and A. Kouzani, Appl. Energy 87, 2881 (2010).

    Article  Google Scholar 

  23. Y. Tian and CY. Zhao, Appl. Energy 104, 538 (2013).

    Article  CAS  Google Scholar 

  24. K. Lovegrove, A. Luzzi, I. Soldiani, and H. Kreetz, Sol. Energy 76, 331 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Narayanan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yang, H., Hsieh, ML. et al. Nickel-Infused Nanoporous Alumina as Tunable Solar Absorber. MRS Advances 5, 2575–2583 (2020). https://doi.org/10.1557/adv.2020.300

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.300

Navigation