Skip to main content

Advertisement

Log in

Effect of TiO2 + Nb2O5 + TiH2 Catalysts on Hydrogen Storage Properties of Magnesium Hydride

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Magnesium hydride (MgH2) is a prospective material for the storage of hydrogen in solid materials. It can also be envisaged for thermal energy storage applications since it has the potential to reversibly absorb hydrogen in large quantities, theoretically up to 7.6% by weight. Also, MgH2 is inexpensive, abundant, and environmentally friendly, but it operates at relatively high temperatures, and the kinetics of the hydrogenation process is slow. Mechanical milling and the addition of catalyst can alter the activation energy and the kinetic properties of the MgH2 phase. It is known that the addition of titanium hydride (TiH2) lowers the enthalpy and enhances the absorption of hydrogen from MgH2, titanium oxide (TiO2) enhances the desorption of hydrogen and niobium oxide (Nb2O5) enhances the absorption of hydrogen. In this work, the influences of the catalysts, as mentioned above on the properties of MgH2, were studied. The samples were analyzed in terms of crystal and microstructure as well as hydrogen storage properties using a pressure-composition isotherm (PCT)measurement. It has been found that the simultaneous addition of the three catalysts enhances the properties of MgH2, lowers the activation energy and operating temperature, increases the rate of intake and release of hydrogen, and provides the largest gravimetric hydrogen storage capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gielen D., Boshell F., Saygin D., Bazilian M.D., Wagner N., Gorini R. The role of renewable energy in the global energy transformation Energy Strategy Rev., 24 (2019), 38–50.

    Article  Google Scholar 

  2. Owusu P., Asumadu S.S. A review of renewable energy sources, sustainability issues and climate change mitigation Cogent Eng., 3 (2016) 1167990, 1–14.

    Google Scholar 

  3. Cassia R., Nocioni M., Correa-Aragunde N., Lamattina L. Climate change and the impact of greenhouse gasses: CO2 and NO, friends and foes of plant oxidative stress Front. Plant. Sci., 9 (2018) 273–278.

    Google Scholar 

  4. Clack B., York R. Carbon Metabolism: Global Capitalism, Climate Change, and the Biospheric Rift Theory and Society, 34(4) (2005), 391–428.

    Google Scholar 

  5. Mimura N. Sea-level rise caused by climate change and its implications for society Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 89 (7) (2013), 281–301.

    Article  Google Scholar 

  6. Perera F. Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: Solutions exist Int J Environ Res Public Health, 15 (2018).

  7. Ahuja D., Tatsutani M. Sustainable energy for developing countries Surv. Perspect. Integr. Environ. Soc., 2 (2009), 1–5.

    Google Scholar 

  8. Peters, G.P., Le Quéré, C., Andrew, R.M. et al. Towards real-time verification of CO2 emissions. Nature Clim. Change 7 (2017), 848–850.

    Article  CAS  Google Scholar 

  9. Falcon-Lang H. J., The Early Carboniferous (Courceyan–Arundian) monsoonal climate of the British Isles: evidence from growth rings in fossil woods Geol.Mag. 136(2) (1999), 177–187.

    Article  Google Scholar 

  10. Zuttel A, Remhof A, Borgschulte A, Friedrichs O. Hydrogen: the future energy carrier. Phil. Trans. R. Soc. A Math. Phys. Eng. Sci. 368 (2010), 3329–3342.

    Article  CAS  Google Scholar 

  11. Andrews J, Shabani B. Where does hydrogen fit in a sustainable energy economy? Procedia Eng. 49 (2012), 15–25.

    Article  CAS  Google Scholar 

  12. Ogden J.M. Hydrogen: the fuel of the future? Phys. Today. 55(4) (2002), 69–73.

    Article  CAS  Google Scholar 

  13. Eberle U, Felderhoff M, Schuth F. Chemical, and physical solutions for hydrogen storage. Angew Chem Int Ed 48 (2009), 6608.

    Article  CAS  Google Scholar 

  14. Myunghyun PS, Hye JP, Thazhe KP, Dae-Woon L. Hydrogen storage in metal-organic framework. Chem Rev. 112(2) (2012) 782–835.

    Article  CAS  Google Scholar 

  15. Staffell I., Scamman D., Abad A.V., Balcombe P., Dodds P.E., Ekins P. The role of hydrogen and fuel cells in the global energy system Energy Environ. Sci. 12 (2019), 463–491.

    Article  CAS  Google Scholar 

  16. Paul B., James B., Chester L., Line S., Jamie S., Adam H., Iain S., How to decarbonise international shipping: options for fuels, technologies and policies Energy Convers. Manage., 182 (2019), 72–88.

    Google Scholar 

  17. Berry G.D., Aceves S.M. The case for hydrogen in a carbon constrained world Journal of Energy Resources Technology, 127 (2005), 89–94.

    Article  CAS  Google Scholar 

  18. Lebaek J., ed., GreenSynFuels. Economic and Technological Statement Regarding Integration and Storage of Renewable Energy in the Energy Sector by Production of Green Synthetic Fuels for Utilization in Fuel Cells, Final Project Report, EUDP Project Journal Number: 64010-0011, Danish Technological Institute, (2011).

    Google Scholar 

  19. Makridis S. S. Hydrogen storage and compression. In Methane and Hydrogen for Energy Storage; Carriveau, R., Ting, D.S.K., Eds.; IET Digital Library: Stevenage, UK, (2016), 1–28

    Google Scholar 

  20. Manoharan, Y.; Hosseini, S.E.; Butler, B.; Alzhahrani, H.; Senior, B.T.F.; Ashuri, T.; Krohn, J. Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect. Appl. Sci. 9 (2019), 2296–22300

    Article  CAS  Google Scholar 

  21. Andersson J., Grönkvist S. Large-scale storage of hydrogen Int. J Hydrogen Energy, 44 (2019), 11901–11919

    Article  CAS  Google Scholar 

  22. Blagojevic V.A., Minic D.M., Minic D.G., Novakovic J.G., Hydrogen economy: modern concepts, challenges and perspectives. In: Minic D. (ed) Hydrogen energy - challenges and perspectives (2012).

    Google Scholar 

  23. Rosen M.A., Koohi-Fayegh S. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems Energy, Ecol Environ, 1 (2016), 10–29.

    Google Scholar 

  24. Dornheim M. Thermodynamics of metal hydrides: tailoring reaction enthalpies of hydrogen storage materials. In: Moreno-Pirajan JC, editor. Thermodynamics—interaction studies–solids, liquids and gases. Rijeka: InTech; (2011), 891–918.

    Google Scholar 

  25. Aymard L., Oumellal Y., Bonnet J.-P. Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries. Beilstein J. Nanotechnol. 6, (2015), 1821–1839.

    Google Scholar 

  26. Uesugi H., Sugiyama T., Nii H., Ito T., Nakatsugawa I. Industrial production of MgH2 and its application J Alloys Compd, 509 (2011), 650–653.

    Google Scholar 

  27. Li B., Li J.D., Shao H.Y., He L.Q. Mg-based hydrogen absorbing materials for thermal energy storage-A review Appl Sci Basel, 8 (2018), 1375–1382.

    Article  CAS  Google Scholar 

  28. Zhang J., Li Z., Wu Y., Guo X., Ye J., Yuan B. Recent advances on the thermal destabilization of Mg-based hydrogen storage materials. RSC Adv. 9 (2019), 408–428.

    Article  CAS  Google Scholar 

  29. Jain A., Agarwal S., Kumar S., Yamaguchi S., Miyaoka H., Kojima Y., Ichikawa How does TiF4 affect the decomposition of MgH2 and its complex variants?–an XPS investigation J. Mater. Chem., 5 (30) (2017), 15543–15551.

    Article  CAS  Google Scholar 

  30. Wang Y. Recent advances in additive-enhanced magnesium hydride for hydrogen storage Prog Nat Sci Mater Int, 27 (2017), 41–49.

    Article  CAS  Google Scholar 

  31. Huang Y., Xia G., Chen J., Zhang B., Li Q., Yu X. One-step uniform growth of magnesium hydride nanoparticles on graphene Prog Nat Sci, 27 (1) (2017), 81–87.

    Article  CAS  Google Scholar 

  32. Yartys V.A., Lototskyy M.V., Akiba E., Albert R., Antonov V.E., Ares J.R. Magnesium based materials for hydrogen based energy storage: past, present and future Int J Hydrogen Energy, 44 (2019), 7809–7859.

    Article  CAS  Google Scholar 

  33. Westerwaal R.J., Haije W.G. Evaluation solid-state hydrogen storage systems, current status ECN-E-08-043 (2008), 74.

    Google Scholar 

  34. Aguey-Zinsou K.-F., Ares-Fernandez J.-R. Hydrogen in magnesium: New perspectives toward functional stores. Energy Environ. Sci. 3 (2010), 526–543.

    Article  CAS  Google Scholar 

  35. Huot J., Ravnsbæk D., Zhang J., Cuevas F., Latroche M., Jensen T. Mechanochemical synthesis of hydrogen storage materials Prog Mater Sci, 58 (1) (2013), 30–75.

    Article  CAS  Google Scholar 

  36. Nobuko H., Takayuki I., Hironobu F. Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling J Phys Chem B, 109 (2005), 7188–7194.

    Article  CAS  Google Scholar 

  37. Huot J., Ravnsbæk D.B., Zhang J., Cuevas F., Latroche M., Jensen T.R. Mechanochemical synthesis of hydrogen storage materials Prog Mater Sci, 58 (1) (2013), 30–75.

    Article  CAS  Google Scholar 

  38. Billur S., Lamari-Darkrim F., Hirscher M. Metal hydride materials for solid hydrogen storage: a review Int J Hydrog Energy, 32 (2007), 1121–1140.

    Article  CAS  Google Scholar 

  39. Yadav T.K., Yadav R.M., Singh D.P. Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites Nanosci Nanotechnol, 2 (3) (2012), 22–48.

    Article  CAS  Google Scholar 

  40. Lobo N., Takasaki A., Mineo K., Klimkowicz A., Goc K. Stability investigation of the γ-MgH2 phase synthesized by high-energy ball milling Int. J. Hydrog. Energ 44(55) (2019), 29179–29188

    Article  CAS  Google Scholar 

  41. Pavel R.-A., Fermín C., Michel L. Optimization of TiH2 content for fast and efficient hydrogen cycling of MgH2-TiH2 nanocomposites Int. J. Hydrog. Energy 43(34) (2018), 16774–16781.

    Article  CAS  Google Scholar 

  42. Radojka V. Theoretical and experimental study of TiO2 influence of on hydrogen sorption in MgH2/Mg system, faculty of physical chemistry, University of Belgrade Ph.D. theses 2017

    Google Scholar 

  43. Webb C.J., A review of catalyst-enhanced magnesium hydride as a hydrogen storage material. J. Phys. Chem. Solids 84 (2015), 96–106.

    Article  CAS  Google Scholar 

  44. Hilman M.A.R., Alief M.S., Klimkowicz A., Uematsu S., Takasaki A. Effects of KNbO3 catalyst on hydrogen sorption kinetics of MgH2 J. Hydrog. Energy 44 (2019) 29196–29202.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ntumba Lobo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobo, N., Klimkowicz, A. & Takasaki, A. Effect of TiO2 + Nb2O5 + TiH2 Catalysts on Hydrogen Storage Properties of Magnesium Hydride. MRS Advances 5, 1059–1069 (2020). https://doi.org/10.1557/adv.2020.29

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.29

Navigation