Abstract
Historically, the enthalpy is the criterion for oxide materials discovery and design. In this regime, highly controlled thin film epitaxy can be leveraged to manifest bulk and interfacial phases that are non-existent in bulk equilibrium phase diagrams. With the recent discovery of entropy-stabilized oxides, entropy and disorder engineering has been realized as an orthogonal approach. This has led to the nucleation and rapid growth of research on high-entropy oxides–multicomponent oxides where the configurational entropy is large but its contribution to its stabilization need not be significant or is currently unknown. From current research, it is clear that entropy enhances the chemical solubility of species and can realize new stereochemical configurations which has led to the rapid discovery of new phases and compositions. The research has expanded beyond studies to understand the role of entropy in stabilization and realization of new crystal structures to now include physical properties and the roles of local and global disorder. Here, key observations made regarding the dielectric and magnetic properties are reviewed. These materials have recently been observed to display concerted symmetry breaking, metal-insulator transitions, and magnetism, paving the way for engineering of these and potentially other functional phenomena. Excitingly, the disorder in these oxides allows for new interplay between spin, orbital, charge, and lattice degrees of freedom to design the physical behavior. We also provide a perspective on the state of the field and prospects for entropic oxide materials in applications considering their unique characteristics.
Similar content being viewed by others
References
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Advanced Engineering Materials 6, 299 (2004).
D.B. Miracle, JOM 1 (2017).
M.-H. Tsai and J.-W. Yeh, Materials Research Letters 2, 107 (2014).
M.-H. Tsai, Entropy 15, 5338 (2013).
F. Otto, Y. Yang, H. Bei, and E.P. George, Acta Materialia 61, 2628 (2013).
M.C. Gao, C.S. Carney, N. Dogan, P.D. Jablonksi, J.A. Hawk, and D.E. Alman, Jom 67, 2653 (2015).
Y.P. Wang, B.S. Li, and H.Z. Fu, Advanced Engineering Materials 11, 641 (2009).
X. Ji, International Journal of Cast Metals Research 28, 229 (2015).
C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, and J.-P. Maria, Nature Communications 6, 8485 (2015).
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, Science 345, 1153 (2014).
A.D. Pogrebnjak, I.V. Yakushchenko, G. Abadias, P. Chartier, O.V. Bondar, V.M. Beresnev, Y. Takeda, O.V. Sobol’, K. Oyoshi, A.A. Andreyev, and B.A. Mukushev, J. Superhard Mater. 35, 356 (2013).
F. Meng and I. Baker, Journal of Alloys and Compounds 645, 376 (2015).
A.D. Pogrebnjak, A.A. Bagdasaryan, I.V. Yakushchenko, and V.M. Beresnev, Russ. Chem. Rev. 83, 1027 (2014).
B.L. Musicó, D. Gilbert, T.Z. Ward, K. Page, E. George, J. Yan, D. Mandrus, and V. Keppens, APL Materials 8, 040912 (2020).
G.N. Kotsonis, C.M. Rost, D.T. Harris, and J.-P. Maria, MRS Communications 8, 1371 (2018).
A. Sarkar, R. Djenadic, N.J. Usharani, K.P. Sanghvi, V.S.K. Chakravadhanula, A.S. Gandhi, H. Hahn, and S.S. Bhattacharya, Journal of the European Ceramic Society 37, 747 (2017).
D. Liu, X. Peng, J. Liu, L. Chen, Y. Yang, and L. An, Journal of the European Ceramic Society 40, 2504 (2020).
C. Rost, Entropy-Stabilized Oxides: Explorations of a Novel Class of Multicomponent Materials, North Carolina State University, 2016.
P.B. Meisenheimer, T.J. Kratofil, and J.T. Heron, Scientific Reports 7, 13344 (2017).
S. Sivakumar, E. Zwier, P.B. Meisenheimer, and J.T. Heron, JoVE (Journal of Visualized Experiments) e57746(2018).
C.M. Rost, Z. Rak, D.W. Brenner, and J.-P. Maria, Journal of the American Ceramic Society 100, 2732 (n.d.).
B.D. Esser, A.J. Hauser, R.E.A. Williams, L.J. Allen, P.M. Woodward, F.Y. Yang, and D.W. McComb, Phys. Rev. Lett. 117, 176101 (2016).
R.K. Patel, S.K. Ojha, S. Kumar, A. Saha, P. Mandal, J.W. Freeland, and S. Middey, Applied Physics Letters 116, 071601 (2020).
Y. Sharma, B.L. Musico, X. Gao, C. Hua, A.F. May, A. Herklotz, A. Rastogi, D. Mandrus, J. Yan, H.N. Lee, M.F. Chisholm, V. Keppens, and T.Z. Ward, Phys. Rev. Materials 2, 060404 (2018).
Y. Sharma, Q. Zheng, A.R. Mazza, E. Skoropata, T. Heitmann, Z. Gai, B. Musico, P.F. Miceli, B.C. Sales, V. Keppens, M. Brahlek, and T.Z. Ward, Phys. Rev. Materials 4, 014404 (2020).
J. Assal, B. Hallstedt, and L.J. Gauckler, Zeitschrift Fuer Metallkunde 87, (1996).
L.A. Zabdyr and O.B. Fabrichnaya, JPE 23, 149 (2002).
P. Perrot and H. Kumar, Cu-Ni-O Ternary Phase Diagram Evaluation (MSI Materials Science International Services GmbH, Stuttgart, n.d.).
J.F. Sarver, F.L. Katnack, and F.A. Hummel, J. Electrochem. Soc. 106, 960 (1959).
C.H. Bates, W.B. White, and R. Roy, Journal of Inorganic and Nuclear Chemistry 28, 397 (1966).
P.B. Meisenheimer, L.D. Williams, S.H. Sung, J. Gim, P. Shafer, G.N. Kotsonis, J.-P. Maria, M. Trassin, R. Hovden, E. Kioupakis, and J.T. Heron, Phys. Rev. Materials 3, 104420 (2019).
Zs. Rák, J.-P. Maria, and D.W. Brenner, Materials Letters 217, 300 (2018).
L.W. Martin, Y.-H. Chu, and R. Ramesh, Materials Science and Engineering: R: Reports 68, 89 (2010).
R. Ramesh and N.A. Spaldin, Nature Materials 6, 21 (2007).
S.T. Bramwell and M.J.P. Gingras, Science 294, 1495 (2001).
A.P. Ramirez, A. Hayashi, R.J. Cava, R. Siddharthan, and B.S. Shastry, Nature 399, 333 (1999).
C. Broholm, R.J. Cava, S.A. Kivelson, D.G. Nocera, M.R. Norman, and T. Senthil, Science 367, (2020).
L. Balents, Nature 464, 199 (2010).
D. Dijkkamp, T. Venkatesan, X.D. Wu, S.A. Shaheen, N. Jisrawi, Y.H. Min-Lee, W.L. McLean, and M. Croft, Appl. Phys. Lett. 51, 619 (1987).
W.E. Pickett, Rev. Mod. Phys. 61, 433 (1989).
P.M. Grant, J. Phys.: Conf. Ser. 129, 012042 (2008).
J.A. Mundy, C.M. Brooks, M.E. Holtz, J.A. Moyer, H. Das, A.F. Rébola, J.T. Heron, J.D. Clarkson, S.M. Disseler, Z. Liu, A. Farhan, R. Held, R. Hovden, E. Padgett, Q. Mao, H. Paik, R. Misra, L.F. Kourkoutis, E. Arenholz, A. Scholl, J.A. Borchers, W.D. Ratcliff, R. Ramesh, C.J. Fennie, P. Schiffer, D.A. Muller, and D.G. Schlom, Nature 537, 523 (2016).
M.W. Lufaso and P.M. Woodward, B Acta Cryst, Acta Cryst Sect B, Acta Crystallogr B, Acta Crystallogr Sect B, Acta Crystallogr Struct Sci, Acta Crystallogr Sect B Struct Sci, Acta Crystallogr B Struct Sci Cryst Eng Mater 60, 10 (2004).
J.F. Ding, O.I. Lebedev, S. Turner, Y.F. Tian, W.J. Hu, J.W. Seo, C. Panagopoulos, W. Prellier, G. Van Tendeloo, and T. Wu, Phys. Rev. B 87, 054428 (2013).
M. Bibes, J.E. Villegas, and A. Barthélémy, Advances in Physics 60, 5 (2011).
M.D. Biegalski, Y. Jia, D.G. Schlom, S. Trolier-McKinstry, S.K. Streiffer, V. Sherman, R. Uecker, and P. Reiche, Appl. Phys. Lett. 88, 192907 (2006).
M.P. Jimenez-Segura, T. Takayama, D. Bérardan, A. Hoser, M. Reehuis, H. Takagi, and N. Dragoe, Appl. Phys. Lett. 114, 122401 (2019).
J. Zhang, J. Yan, S. Calder, Q. Zheng, M.A. McGuire, D.L. Abernathy, Y. Ren, S.H. Lapidus, K. Page, H. Zheng, J.W. Freeland, J.D. Budai, and R.P. Hermann, Chem. Mater. 31, 3705 (2019).
M.J. Krogstad, P.M. Gehring, S. Rosenkranz, R. Osborn, F. Ye, Y. Liu, J.P.C. Ruff, W. Chen, J.M. Wozniak, H. Luo, O. Chmaissem, Z.-G. Ye, and D. Phelan, Nature Materials 1 (2018).
Z.-Y. Cheng, R.S. Katiyar, X. Yao, and A.S. Bhalla, Phys. Rev. B 57, 8166 (1998).
L.E. Cross, Ferroelectrics 76, 241 (1987).
D. Damjanovic, Rep. Prog. Phys. 61, 1267 (1998).
I. Grinberg, V.R. Cooper, and A.M. Rappe, Nature 419, 909 (2002).
I. Grinberg, V.R. Cooper, and A.M. Rappe, Phys. Rev. B 69, 144118 (2004).
M. Eremenko, V. Krayzman, A. Bosak, H.Y. Playford, K.W. Chapman, J.C. Woicik, B. Ravel, and I. Levin, Nat Commun 10, 1 (2019).
M.E. Manley, D.L. Abernathy, R. Sahul, D.E. Parshall, J.W. Lynn, A.D. Christianson, P.J. Stonaha, E.D. Specht, and J.D. Budai, Science Advances 2, e1501814 (2016).
F. Li, S. Zhang, T. Yang, Z. Xu, N. Zhang, G. Liu, J. Wang, J. Wang, Z. Cheng, Z.-G. Ye, J. Luo, T.R. Shrout, and L.-Q. Chen, Nat Commun 7, 1 (2016).
D. Berardan, A.K. Meena, S. Franger, C. Herrero, and N. Dragoe, Journal of Alloys and Compounds 704, 693 (2017).
A. Dixit, S.B. Majumder, R.S. Katiyar, and A.S. Bhalla, J Mater Sci 41, 87 (2006).
Y.-S. Seo, J.S. Ahn, and I.-K. Jeong, Journal of the Korean Physical Society 62, 749 (2013).
J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M.C. Quinn, W.M. Mellor, N. Zhou, K. Vecchio, and J. Luo, Scientific Reports 6, 37946 (2016).
J.L. Braun, C.M. Rost, M. Lim, A. Giri, D.H. Olson, G.N. Kotsonis, G. Stan, D.W. Brenner, J.-P. Maria, and P.E. Hopkins, Advanced Materials 30, 1805004 (2018).
Zs. Rak, C.M. Rost, M. Lim, P. Sarker, C. Toher, S. Curtarolo, J.-P. Maria, and D.W. Brenner, Journal of Applied Physics 120, 095105 (2016).
F. Li, L. Zhou, J.-X. Liu, Y. Liang, and G.-J. Zhang, J Adv Ceram 8, 576 (2019).
J. Gild, M. Samiee, J.L. Braun, T. Harrington, H. Vega, P.E. Hopkins, K. Vecchio, and J. Luo, Journal of the European Ceramic Society 38, 3578 (2018).
X. Yan, L. Constantin, Y. Lu, J.-F. Silvain, M. Nastasi, and B. Cui, Journal of the American Ceramic Society 101, 4486 (2018).
M. Brahlek, A.R. Mazza, K.C. Pitike, E. Skoropata, J. Lapano, G. Eres, V.R. Cooper, and T.Z. Ward, ArXiv:2004.02985 [Cond-Mat] (2020).
D. Berardan, S. Franger, D. Dragoe, A.K. Meena, and N. Dragoe, Physica Status Solidi - Rapid Research Letters 10, 328 (2016).
D. Berardan, S. Franger, A.K. Meena, and N. Dragoe, J. Mater. Chem. A 9536 (2016).
A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. de Biasi, C. Kübel, T. Brezesinski, S.S. Bhattacharya, H. Hahn, and B. Breitung, Nat Commun 9, 1 (2018).
N. Qiu, H. Chen, Z. Yang, S. Sun, Y. Wang, and Y. Cui, Journal of Alloys and Compounds 777, 767 (2019).
Q. Wang, A. Sarkar, Z. Li, Y. Lu, L. Velasco, S.S. Bhattacharya, T. Brezesinski, H. Hahn, and B. Breitung, Electrochemistry Communications 100, 121 (2019).
Y. Zheng, Y. Yi, M. Fan, H. Liu, X. Li, R. Zhang, M. Li, and Z.-A. Qiao, Energy Storage Materials 23, 678 (2019).
H. Chen, J. Fu, P. Zhang, H. Peng, C.W. Abney, K. Jie, X. Liu, M. Chi, and S. Dai, J. Mater. Chem. A 6, 11129 (2018).
H. Chen, W. Lin, Z. Zhang, K. Jie, D.R. Mullins, X. Sang, S.-Z. Yang, C.J. Jafta, C.A. Bridges, X. Hu, R.R. Unocic, J. Fu, P. Zhang, and S. Dai, ACS Materials Lett. 1, 83 (2019).
Q. Du, J. Yan, X. Zhang, J. Li, X. Liu, J. Zhang, and X. Qi, J Mater Sci: Mater Electron (2020).
Z. Grzesik, G. Smoła, M. Stygar, J. Dąbrowa, M. Zajusz, K. Mroczka, and M. Danielewski, Journal of the European Ceramic Society 39, 4292 (2019).
L.K. Bhaskar, V. Nallathambi, and R. Kumar, Journal of the American Ceramic Society 103, 3416 (2020).
M.-I. Lin, M.-H. Tsai, W.-J. Shen, and J.-W. Yeh, Thin Solid Films 518, 2732 (2010).
C.-H. Tsau, Y.-C. Yang, C.-C. Lee, L.-Y. Wu, and H.-J. Huang, Procedia Engineering 36, 246 (2012).
C.-H. Tsau, Z.-Y. Hwang, and S.-K. Chen, Advances in Materials Science and Engineering 2015, (2015).
A. Sarkar, B. Eggert, L. Velasco, X. Mu, J. Lill, K. Ollefs, S.S. Bhattacharya, H. Wende, R. Kruk, R.A. Brand, and H. Hahn, ArXiv:2003.00268 [Cond-Mat] (2020).
J.B. Goodenough, Phys. Rev. 100, 564 (1955).
J. Kanamori, Journal of Physics and Chemistry of Solids 10, 87 (1959).
P.W. Anderson, Phys. Rev. 79, 350 (1950).
J.M. Iwata-Harms, F.J. Wong, U.S. Alaan, B.J. Kirby, J.A. Borchers, M.F. Toney, B.B. Nelson-Cheeseman, M. Liberati, E. Arenholz, and Y. Suzuki, Phys. Rev. B 85, 214424 (2012).
D. Sherrington, in North-Holland Mathematical Library, edited by J.G. Taylor (Elsevier, 1993), pp. 261–291.
G. Parisi, Proceedings of the National Academy of Sciences 103, 7948 (2006).
R.F. Wang, C. Nisoli, R.S. Freitas, J. Li, W. McConville, B.J. Cooley, M.S. Lund, N. Samarth, C. Leighton, V.H. Crespi, and P. Schiffer, Nature 439, 303 (2006).
R. Witte, A. Sarkar, R. Kruk, B. Eggert, R.A. Brand, H. Wende, and H. Hahn, Phys. Rev. Materials 3, 034406 (2019).
B.A. Frandsen, K.A. Petersen, N.A. Ducharme, A.G. Shaw, E.J. Gibson, B. Winn, J. Yan, J. Zhang, M.E. Manley, and R.P. Hermann, ArXiv:2004.04218 [Cond-Mat] (2020).
F. Radu and H. Zabel, Springer Tracts in Modern Physics 227, 97 (2007).
J.T. Heron, M. Trassin, K. Ashraf, M. Gajek, Q. He, S.Y. Yang, D.E. Nikonov, Y.H. Chu, S. Salahuddin, and R. Ramesh, Physical Review Letters 107, 1 (2011).
A. Mao, H.-Z. Xiang, Z.-G. Zhang, K. Kuramoto, H. Zhang, and Y. Jia, Journal of Magnetism and Magnetic Materials 497, 165884 (2020).
A. Mao, H.-X. Xie, H.-Z. Xiang, Z.-G. Zhang, H. Zhang, and S. Ran, Journal of Magnetism and Magnetic Materials 503, 166594 (2020).
B. Musicó, Q. Wright, T.Z. Ward, A. Grutter, E. Arenholz, D. Gilbert, D. Mandrus, and V. Keppens, Phys. Rev. Materials 3, 104416 (2019).
D.J. Amit, H. Gutfreund, and H. Sompolinsky, Phys. Rev. A 32, 1007 (1985).
P. Baldi and S.S. Venkatesh, Phys. Rev. Lett. 58, 913 (1987).
K.E. Hamilton, C.D. Schuman, S.R. Young, N. Imam, and T.S. Humble, in 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) (2018), pp. 1194–1203.
F. Bert, V. Dupuis, E. Vincent, J. Hammann, and J.-P. Bouchaud, Phys. Rev. Lett. 92, 167203 (2004).
G. Parisi, Physica A: Statistical Mechanics and Its Applications 194, 28 (1993).
G. Parisi and F. Slanina, EPL 17, 497 (1992).
M. Mézard and G. Parisi, J. Phys.: Condens. Matter 11, A157 (1999).
D.L. Sidebottom, Front. Mater. 6, (2019).
C. Yildirim, J.-Y. Raty, and M. Micoulaut, Nat Commun 7, (2016).
M. Gruyters, Phys. Rev. Lett. 95, 077204 (2005).
J.-W. Cai, C. Wang, B.-G. Shen, J.-G. Zhao, and W.-S. Zhan, Appl. Phys. Lett. 71, 1727 (1997).
M. Ali, P. Adie, C.H. Marrows, D. Greig, B.J. Hickey, and R.L. Stamps, Nat Mater 6, 70 (2007).
Zs. Rák and D.W. Brenner, Journal of Applied Physics 127, 185108 (2020).
A.Z. Menshikov, Y.A. Dorofeev, A.G. Klimenko, and N.A. Mironova, Physica Status Solidi (b) 164, 275 (1991).
M.S. Seehra, J.C. Dean, and R. Kannan, Phys. Rev. B 37, 5864 (1988).
S. Praveen and H.S. Kim, Advanced Engineering Materials 20, 1700645 (n.d.).
H. Huang, Y. Wu, J. He, H. Wang, X. Liu, K. An, W. Wu, and Z. Lu, Advanced Materials 29, 1701678 (2017).
M. Acet, AIP Advances 9, 095037 (2019).
P. Li, A. Wang, and C.T. Liu, Journal of Alloys and Compounds 694, 55 (2017).
O. Schneeweiss, M. Friák, M. Dudová, D. Holec, M. Šob, D. Kriegner, V. Holý, P. Beran, E.P. George, J. Neugebauer, and A. Dlouhý, Phys. Rev. B 96, 014437 (2017).
X. Chang, M. Zeng, K. Liu, and L. Fu, Advanced Materials n/a, 1907226 (n.d.).
C. Niu, C.R. LaRosa, J. Miao, M.J. Mills, and M. Ghazisaeidi, Nature Communications 9, 1 (2018).
J. Dąbrowa and M. Danielewski, Metals 10, 347 (2020).
V. Maier-Kiener, B. Schuh, E.P. George, H. Clemens, and A. Hohenwarter, Journal of Materials Research 32, 2658 (2017).
S. Sarkar, X. Ren, and K. Otsuka, Phys. Rev. Lett. 95, 205702 (2005).
Y. Wang, X. Ren, K. Otsuka, and A. Saxena, Phys. Rev. B 76, 132201 (2007).
S. Iida and H. Terauchi, J. Phys. Soc. Jpn. 52, 4044 (1983).
B.E. Vugmeister and M.D. Glinchuk, Rev. Mod. Phys. 62, 993 (1990).
D. Choudhury, P. Mandal, R. Mathieu, A. Hazarika, S. Rajan, A. Sundaresan, U.V. Waghmare, R. Knut, O. Karis, P. Nordblad, and D.D. Sarma, Phys. Rev. Lett. 108, 127201 (2012).
W. Kleemann, S. Bedanta, P. Borisov, V.V. Shvartsman, S. Miga, J. Dec, A. Tkach, and P.M. Vilarinho, Eur. Phys. J. B 71, 407 (2009).
W. Kleemann, V.V. Shvartsman, S. Bedanta, P. Borisov, A. Tkach, and P.M. Vilarinho, J. Phys.: Condens. Matter 20, 434216 (2008).
V.V. Shvartsman, S. Bedanta, P. Borisov, W. Kleemann, A. Tkach, and P.M. Vilarinho, Phys. Rev. Lett. 101, 165704 (2008).
K. Kaufmann, D. Maryanovsky, W.M. Mellor, C. Zhu, A.S. Rosengarten, T.J. Harrington, C. Oses, C. Toher, S. Curtarolo, and K.S. Vecchio, Npj Computational Materials 6, 1 (2020).
P. Sarker, T. Harrington, C. Toher, C. Oses, M. Samiee, J.-P. Maria, D.W. Brenner, K.S. Vecchio, and S. Curtarolo, Nat Commun 9, 1 (2018).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Meisenheimer, P.B., Heron, J.T. Oxides and the high entropy regime: A new mix for engineering physical properties. MRS Advances 5, 3419–3436 (2020). https://doi.org/10.1557/adv.2020.295
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2020.295