Skip to main content

Advertisement

Log in

Oxides and the high entropy regime: A new mix for engineering physical properties

  • Snapshot Review
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Historically, the enthalpy is the criterion for oxide materials discovery and design. In this regime, highly controlled thin film epitaxy can be leveraged to manifest bulk and interfacial phases that are non-existent in bulk equilibrium phase diagrams. With the recent discovery of entropy-stabilized oxides, entropy and disorder engineering has been realized as an orthogonal approach. This has led to the nucleation and rapid growth of research on high-entropy oxides–multicomponent oxides where the configurational entropy is large but its contribution to its stabilization need not be significant or is currently unknown. From current research, it is clear that entropy enhances the chemical solubility of species and can realize new stereochemical configurations which has led to the rapid discovery of new phases and compositions. The research has expanded beyond studies to understand the role of entropy in stabilization and realization of new crystal structures to now include physical properties and the roles of local and global disorder. Here, key observations made regarding the dielectric and magnetic properties are reviewed. These materials have recently been observed to display concerted symmetry breaking, metal-insulator transitions, and magnetism, paving the way for engineering of these and potentially other functional phenomena. Excitingly, the disorder in these oxides allows for new interplay between spin, orbital, charge, and lattice degrees of freedom to design the physical behavior. We also provide a perspective on the state of the field and prospects for entropic oxide materials in applications considering their unique characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Advanced Engineering Materials 6, 299 (2004).

    CAS  Google Scholar 

  2. D.B. Miracle, JOM 1 (2017).

  3. M.-H. Tsai and J.-W. Yeh, Materials Research Letters 2, 107 (2014).

    Google Scholar 

  4. M.-H. Tsai, Entropy 15, 5338 (2013).

    CAS  Google Scholar 

  5. F. Otto, Y. Yang, H. Bei, and E.P. George, Acta Materialia 61, 2628 (2013).

    CAS  Google Scholar 

  6. M.C. Gao, C.S. Carney, N. Dogan, P.D. Jablonksi, J.A. Hawk, and D.E. Alman, Jom 67, 2653 (2015).

    CAS  Google Scholar 

  7. Y.P. Wang, B.S. Li, and H.Z. Fu, Advanced Engineering Materials 11, 641 (2009).

    CAS  Google Scholar 

  8. X. Ji, International Journal of Cast Metals Research 28, 229 (2015).

    CAS  Google Scholar 

  9. C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, and J.-P. Maria, Nature Communications 6, 8485 (2015).

    CAS  Google Scholar 

  10. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, Science 345, 1153 (2014).

    CAS  Google Scholar 

  11. A.D. Pogrebnjak, I.V. Yakushchenko, G. Abadias, P. Chartier, O.V. Bondar, V.M. Beresnev, Y. Takeda, O.V. Sobol’, K. Oyoshi, A.A. Andreyev, and B.A. Mukushev, J. Superhard Mater. 35, 356 (2013).

    Google Scholar 

  12. F. Meng and I. Baker, Journal of Alloys and Compounds 645, 376 (2015).

    CAS  Google Scholar 

  13. A.D. Pogrebnjak, A.A. Bagdasaryan, I.V. Yakushchenko, and V.M. Beresnev, Russ. Chem. Rev. 83, 1027 (2014).

    Google Scholar 

  14. B.L. Musicó, D. Gilbert, T.Z. Ward, K. Page, E. George, J. Yan, D. Mandrus, and V. Keppens, APL Materials 8, 040912 (2020).

    Google Scholar 

  15. G.N. Kotsonis, C.M. Rost, D.T. Harris, and J.-P. Maria, MRS Communications 8, 1371 (2018).

    CAS  Google Scholar 

  16. A. Sarkar, R. Djenadic, N.J. Usharani, K.P. Sanghvi, V.S.K. Chakravadhanula, A.S. Gandhi, H. Hahn, and S.S. Bhattacharya, Journal of the European Ceramic Society 37, 747 (2017).

    CAS  Google Scholar 

  17. D. Liu, X. Peng, J. Liu, L. Chen, Y. Yang, and L. An, Journal of the European Ceramic Society 40, 2504 (2020).

    CAS  Google Scholar 

  18. C. Rost, Entropy-Stabilized Oxides: Explorations of a Novel Class of Multicomponent Materials, North Carolina State University, 2016.

  19. P.B. Meisenheimer, T.J. Kratofil, and J.T. Heron, Scientific Reports 7, 13344 (2017).

    CAS  Google Scholar 

  20. S. Sivakumar, E. Zwier, P.B. Meisenheimer, and J.T. Heron, JoVE (Journal of Visualized Experiments) e57746(2018).

  21. C.M. Rost, Z. Rak, D.W. Brenner, and J.-P. Maria, Journal of the American Ceramic Society 100, 2732 (n.d.).

  22. B.D. Esser, A.J. Hauser, R.E.A. Williams, L.J. Allen, P.M. Woodward, F.Y. Yang, and D.W. McComb, Phys. Rev. Lett. 117, 176101 (2016).

    CAS  Google Scholar 

  23. R.K. Patel, S.K. Ojha, S. Kumar, A. Saha, P. Mandal, J.W. Freeland, and S. Middey, Applied Physics Letters 116, 071601 (2020).

    CAS  Google Scholar 

  24. Y. Sharma, B.L. Musico, X. Gao, C. Hua, A.F. May, A. Herklotz, A. Rastogi, D. Mandrus, J. Yan, H.N. Lee, M.F. Chisholm, V. Keppens, and T.Z. Ward, Phys. Rev. Materials 2, 060404 (2018).

    CAS  Google Scholar 

  25. Y. Sharma, Q. Zheng, A.R. Mazza, E. Skoropata, T. Heitmann, Z. Gai, B. Musico, P.F. Miceli, B.C. Sales, V. Keppens, M. Brahlek, and T.Z. Ward, Phys. Rev. Materials 4, 014404 (2020).

    CAS  Google Scholar 

  26. J. Assal, B. Hallstedt, and L.J. Gauckler, Zeitschrift Fuer Metallkunde 87, (1996).

  27. L.A. Zabdyr and O.B. Fabrichnaya, JPE 23, 149 (2002).

    CAS  Google Scholar 

  28. P. Perrot and H. Kumar, Cu-Ni-O Ternary Phase Diagram Evaluation (MSI Materials Science International Services GmbH, Stuttgart, n.d.).

  29. J.F. Sarver, F.L. Katnack, and F.A. Hummel, J. Electrochem. Soc. 106, 960 (1959).

    CAS  Google Scholar 

  30. C.H. Bates, W.B. White, and R. Roy, Journal of Inorganic and Nuclear Chemistry 28, 397 (1966).

    CAS  Google Scholar 

  31. P.B. Meisenheimer, L.D. Williams, S.H. Sung, J. Gim, P. Shafer, G.N. Kotsonis, J.-P. Maria, M. Trassin, R. Hovden, E. Kioupakis, and J.T. Heron, Phys. Rev. Materials 3, 104420 (2019).

    CAS  Google Scholar 

  32. Zs. Rák, J.-P. Maria, and D.W. Brenner, Materials Letters 217, 300 (2018).

    Google Scholar 

  33. L.W. Martin, Y.-H. Chu, and R. Ramesh, Materials Science and Engineering: R: Reports 68, 89 (2010).

    Google Scholar 

  34. R. Ramesh and N.A. Spaldin, Nature Materials 6, 21 (2007).

    CAS  Google Scholar 

  35. S.T. Bramwell and M.J.P. Gingras, Science 294, 1495 (2001).

    CAS  Google Scholar 

  36. A.P. Ramirez, A. Hayashi, R.J. Cava, R. Siddharthan, and B.S. Shastry, Nature 399, 333 (1999).

    CAS  Google Scholar 

  37. C. Broholm, R.J. Cava, S.A. Kivelson, D.G. Nocera, M.R. Norman, and T. Senthil, Science 367, (2020).

  38. L. Balents, Nature 464, 199 (2010).

    CAS  Google Scholar 

  39. D. Dijkkamp, T. Venkatesan, X.D. Wu, S.A. Shaheen, N. Jisrawi, Y.H. Min-Lee, W.L. McLean, and M. Croft, Appl. Phys. Lett. 51, 619 (1987).

    CAS  Google Scholar 

  40. W.E. Pickett, Rev. Mod. Phys. 61, 433 (1989).

    CAS  Google Scholar 

  41. P.M. Grant, J. Phys.: Conf. Ser. 129, 012042 (2008).

    Google Scholar 

  42. J.A. Mundy, C.M. Brooks, M.E. Holtz, J.A. Moyer, H. Das, A.F. Rébola, J.T. Heron, J.D. Clarkson, S.M. Disseler, Z. Liu, A. Farhan, R. Held, R. Hovden, E. Padgett, Q. Mao, H. Paik, R. Misra, L.F. Kourkoutis, E. Arenholz, A. Scholl, J.A. Borchers, W.D. Ratcliff, R. Ramesh, C.J. Fennie, P. Schiffer, D.A. Muller, and D.G. Schlom, Nature 537, 523 (2016).

    CAS  Google Scholar 

  43. M.W. Lufaso and P.M. Woodward, B Acta Cryst, Acta Cryst Sect B, Acta Crystallogr B, Acta Crystallogr Sect B, Acta Crystallogr Struct Sci, Acta Crystallogr Sect B Struct Sci, Acta Crystallogr B Struct Sci Cryst Eng Mater 60, 10 (2004).

    Google Scholar 

  44. J.F. Ding, O.I. Lebedev, S. Turner, Y.F. Tian, W.J. Hu, J.W. Seo, C. Panagopoulos, W. Prellier, G. Van Tendeloo, and T. Wu, Phys. Rev. B 87, 054428 (2013).

    Google Scholar 

  45. M. Bibes, J.E. Villegas, and A. Barthélémy, Advances in Physics 60, 5 (2011).

    CAS  Google Scholar 

  46. M.D. Biegalski, Y. Jia, D.G. Schlom, S. Trolier-McKinstry, S.K. Streiffer, V. Sherman, R. Uecker, and P. Reiche, Appl. Phys. Lett. 88, 192907 (2006).

    Google Scholar 

  47. M.P. Jimenez-Segura, T. Takayama, D. Bérardan, A. Hoser, M. Reehuis, H. Takagi, and N. Dragoe, Appl. Phys. Lett. 114, 122401 (2019).

    Google Scholar 

  48. J. Zhang, J. Yan, S. Calder, Q. Zheng, M.A. McGuire, D.L. Abernathy, Y. Ren, S.H. Lapidus, K. Page, H. Zheng, J.W. Freeland, J.D. Budai, and R.P. Hermann, Chem. Mater. 31, 3705 (2019).

    CAS  Google Scholar 

  49. M.J. Krogstad, P.M. Gehring, S. Rosenkranz, R. Osborn, F. Ye, Y. Liu, J.P.C. Ruff, W. Chen, J.M. Wozniak, H. Luo, O. Chmaissem, Z.-G. Ye, and D. Phelan, Nature Materials 1 (2018).

  50. Z.-Y. Cheng, R.S. Katiyar, X. Yao, and A.S. Bhalla, Phys. Rev. B 57, 8166 (1998).

    CAS  Google Scholar 

  51. L.E. Cross, Ferroelectrics 76, 241 (1987).

    CAS  Google Scholar 

  52. D. Damjanovic, Rep. Prog. Phys. 61, 1267 (1998).

    CAS  Google Scholar 

  53. I. Grinberg, V.R. Cooper, and A.M. Rappe, Nature 419, 909 (2002).

    CAS  Google Scholar 

  54. I. Grinberg, V.R. Cooper, and A.M. Rappe, Phys. Rev. B 69, 144118 (2004).

    Google Scholar 

  55. M. Eremenko, V. Krayzman, A. Bosak, H.Y. Playford, K.W. Chapman, J.C. Woicik, B. Ravel, and I. Levin, Nat Commun 10, 1 (2019).

    CAS  Google Scholar 

  56. M.E. Manley, D.L. Abernathy, R. Sahul, D.E. Parshall, J.W. Lynn, A.D. Christianson, P.J. Stonaha, E.D. Specht, and J.D. Budai, Science Advances 2, e1501814 (2016).

    Google Scholar 

  57. F. Li, S. Zhang, T. Yang, Z. Xu, N. Zhang, G. Liu, J. Wang, J. Wang, Z. Cheng, Z.-G. Ye, J. Luo, T.R. Shrout, and L.-Q. Chen, Nat Commun 7, 1 (2016).

    Google Scholar 

  58. D. Berardan, A.K. Meena, S. Franger, C. Herrero, and N. Dragoe, Journal of Alloys and Compounds 704, 693 (2017).

    CAS  Google Scholar 

  59. A. Dixit, S.B. Majumder, R.S. Katiyar, and A.S. Bhalla, J Mater Sci 41, 87 (2006).

    CAS  Google Scholar 

  60. Y.-S. Seo, J.S. Ahn, and I.-K. Jeong, Journal of the Korean Physical Society 62, 749 (2013).

    CAS  Google Scholar 

  61. J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M.C. Quinn, W.M. Mellor, N. Zhou, K. Vecchio, and J. Luo, Scientific Reports 6, 37946 (2016).

    CAS  Google Scholar 

  62. J.L. Braun, C.M. Rost, M. Lim, A. Giri, D.H. Olson, G.N. Kotsonis, G. Stan, D.W. Brenner, J.-P. Maria, and P.E. Hopkins, Advanced Materials 30, 1805004 (2018).

    Google Scholar 

  63. Zs. Rak, C.M. Rost, M. Lim, P. Sarker, C. Toher, S. Curtarolo, J.-P. Maria, and D.W. Brenner, Journal of Applied Physics 120, 095105 (2016).

    Google Scholar 

  64. F. Li, L. Zhou, J.-X. Liu, Y. Liang, and G.-J. Zhang, J Adv Ceram 8, 576 (2019).

    Google Scholar 

  65. J. Gild, M. Samiee, J.L. Braun, T. Harrington, H. Vega, P.E. Hopkins, K. Vecchio, and J. Luo, Journal of the European Ceramic Society 38, 3578 (2018).

    CAS  Google Scholar 

  66. X. Yan, L. Constantin, Y. Lu, J.-F. Silvain, M. Nastasi, and B. Cui, Journal of the American Ceramic Society 101, 4486 (2018).

    CAS  Google Scholar 

  67. M. Brahlek, A.R. Mazza, K.C. Pitike, E. Skoropata, J. Lapano, G. Eres, V.R. Cooper, and T.Z. Ward, ArXiv:2004.02985 [Cond-Mat] (2020).

  68. D. Berardan, S. Franger, D. Dragoe, A.K. Meena, and N. Dragoe, Physica Status Solidi - Rapid Research Letters 10, 328 (2016).

    CAS  Google Scholar 

  69. D. Berardan, S. Franger, A.K. Meena, and N. Dragoe, J. Mater. Chem. A 9536 (2016).

  70. A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. de Biasi, C. Kübel, T. Brezesinski, S.S. Bhattacharya, H. Hahn, and B. Breitung, Nat Commun 9, 1 (2018).

    Google Scholar 

  71. N. Qiu, H. Chen, Z. Yang, S. Sun, Y. Wang, and Y. Cui, Journal of Alloys and Compounds 777, 767 (2019).

    CAS  Google Scholar 

  72. Q. Wang, A. Sarkar, Z. Li, Y. Lu, L. Velasco, S.S. Bhattacharya, T. Brezesinski, H. Hahn, and B. Breitung, Electrochemistry Communications 100, 121 (2019).

    Google Scholar 

  73. Y. Zheng, Y. Yi, M. Fan, H. Liu, X. Li, R. Zhang, M. Li, and Z.-A. Qiao, Energy Storage Materials 23, 678 (2019).

    Google Scholar 

  74. H. Chen, J. Fu, P. Zhang, H. Peng, C.W. Abney, K. Jie, X. Liu, M. Chi, and S. Dai, J. Mater. Chem. A 6, 11129 (2018).

    CAS  Google Scholar 

  75. H. Chen, W. Lin, Z. Zhang, K. Jie, D.R. Mullins, X. Sang, S.-Z. Yang, C.J. Jafta, C.A. Bridges, X. Hu, R.R. Unocic, J. Fu, P. Zhang, and S. Dai, ACS Materials Lett. 1, 83 (2019).

    CAS  Google Scholar 

  76. Q. Du, J. Yan, X. Zhang, J. Li, X. Liu, J. Zhang, and X. Qi, J Mater Sci: Mater Electron (2020).

  77. Z. Grzesik, G. Smoła, M. Stygar, J. Dąbrowa, M. Zajusz, K. Mroczka, and M. Danielewski, Journal of the European Ceramic Society 39, 4292 (2019).

    CAS  Google Scholar 

  78. L.K. Bhaskar, V. Nallathambi, and R. Kumar, Journal of the American Ceramic Society 103, 3416 (2020).

    CAS  Google Scholar 

  79. M.-I. Lin, M.-H. Tsai, W.-J. Shen, and J.-W. Yeh, Thin Solid Films 518, 2732 (2010).

    CAS  Google Scholar 

  80. C.-H. Tsau, Y.-C. Yang, C.-C. Lee, L.-Y. Wu, and H.-J. Huang, Procedia Engineering 36, 246 (2012).

    CAS  Google Scholar 

  81. C.-H. Tsau, Z.-Y. Hwang, and S.-K. Chen, Advances in Materials Science and Engineering 2015, (2015).

  82. A. Sarkar, B. Eggert, L. Velasco, X. Mu, J. Lill, K. Ollefs, S.S. Bhattacharya, H. Wende, R. Kruk, R.A. Brand, and H. Hahn, ArXiv:2003.00268 [Cond-Mat] (2020).

  83. J.B. Goodenough, Phys. Rev. 100, 564 (1955).

    CAS  Google Scholar 

  84. J. Kanamori, Journal of Physics and Chemistry of Solids 10, 87 (1959).

    CAS  Google Scholar 

  85. P.W. Anderson, Phys. Rev. 79, 350 (1950).

    Google Scholar 

  86. J.M. Iwata-Harms, F.J. Wong, U.S. Alaan, B.J. Kirby, J.A. Borchers, M.F. Toney, B.B. Nelson-Cheeseman, M. Liberati, E. Arenholz, and Y. Suzuki, Phys. Rev. B 85, 214424 (2012).

    Google Scholar 

  87. D. Sherrington, in North-Holland Mathematical Library, edited by J.G. Taylor (Elsevier, 1993), pp. 261–291.

  88. G. Parisi, Proceedings of the National Academy of Sciences 103, 7948 (2006).

    CAS  Google Scholar 

  89. R.F. Wang, C. Nisoli, R.S. Freitas, J. Li, W. McConville, B.J. Cooley, M.S. Lund, N. Samarth, C. Leighton, V.H. Crespi, and P. Schiffer, Nature 439, 303 (2006).

    CAS  Google Scholar 

  90. R. Witte, A. Sarkar, R. Kruk, B. Eggert, R.A. Brand, H. Wende, and H. Hahn, Phys. Rev. Materials 3, 034406 (2019).

    CAS  Google Scholar 

  91. B.A. Frandsen, K.A. Petersen, N.A. Ducharme, A.G. Shaw, E.J. Gibson, B. Winn, J. Yan, J. Zhang, M.E. Manley, and R.P. Hermann, ArXiv:2004.04218 [Cond-Mat] (2020).

  92. F. Radu and H. Zabel, Springer Tracts in Modern Physics 227, 97 (2007).

    Google Scholar 

  93. J.T. Heron, M. Trassin, K. Ashraf, M. Gajek, Q. He, S.Y. Yang, D.E. Nikonov, Y.H. Chu, S. Salahuddin, and R. Ramesh, Physical Review Letters 107, 1 (2011).

    Google Scholar 

  94. A. Mao, H.-Z. Xiang, Z.-G. Zhang, K. Kuramoto, H. Zhang, and Y. Jia, Journal of Magnetism and Magnetic Materials 497, 165884 (2020).

    CAS  Google Scholar 

  95. A. Mao, H.-X. Xie, H.-Z. Xiang, Z.-G. Zhang, H. Zhang, and S. Ran, Journal of Magnetism and Magnetic Materials 503, 166594 (2020).

    CAS  Google Scholar 

  96. B. Musicó, Q. Wright, T.Z. Ward, A. Grutter, E. Arenholz, D. Gilbert, D. Mandrus, and V. Keppens, Phys. Rev. Materials 3, 104416 (2019).

    Google Scholar 

  97. D.J. Amit, H. Gutfreund, and H. Sompolinsky, Phys. Rev. A 32, 1007 (1985).

    CAS  Google Scholar 

  98. P. Baldi and S.S. Venkatesh, Phys. Rev. Lett. 58, 913 (1987).

    CAS  Google Scholar 

  99. K.E. Hamilton, C.D. Schuman, S.R. Young, N. Imam, and T.S. Humble, in 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) (2018), pp. 1194–1203.

  100. F. Bert, V. Dupuis, E. Vincent, J. Hammann, and J.-P. Bouchaud, Phys. Rev. Lett. 92, 167203 (2004).

    CAS  Google Scholar 

  101. G. Parisi, Physica A: Statistical Mechanics and Its Applications 194, 28 (1993).

    Google Scholar 

  102. G. Parisi and F. Slanina, EPL 17, 497 (1992).

    Google Scholar 

  103. M. Mézard and G. Parisi, J. Phys.: Condens. Matter 11, A157 (1999).

    Google Scholar 

  104. D.L. Sidebottom, Front. Mater. 6, (2019).

  105. C. Yildirim, J.-Y. Raty, and M. Micoulaut, Nat Commun 7, (2016).

  106. M. Gruyters, Phys. Rev. Lett. 95, 077204 (2005).

    CAS  Google Scholar 

  107. J.-W. Cai, C. Wang, B.-G. Shen, J.-G. Zhao, and W.-S. Zhan, Appl. Phys. Lett. 71, 1727 (1997).

    CAS  Google Scholar 

  108. M. Ali, P. Adie, C.H. Marrows, D. Greig, B.J. Hickey, and R.L. Stamps, Nat Mater 6, 70 (2007).

    CAS  Google Scholar 

  109. Zs. Rák and D.W. Brenner, Journal of Applied Physics 127, 185108 (2020).

    Google Scholar 

  110. A.Z. Menshikov, Y.A. Dorofeev, A.G. Klimenko, and N.A. Mironova, Physica Status Solidi (b) 164, 275 (1991).

    CAS  Google Scholar 

  111. M.S. Seehra, J.C. Dean, and R. Kannan, Phys. Rev. B 37, 5864 (1988).

    CAS  Google Scholar 

  112. S. Praveen and H.S. Kim, Advanced Engineering Materials 20, 1700645 (n.d.).

  113. H. Huang, Y. Wu, J. He, H. Wang, X. Liu, K. An, W. Wu, and Z. Lu, Advanced Materials 29, 1701678 (2017).

    Google Scholar 

  114. M. Acet, AIP Advances 9, 095037 (2019).

    Google Scholar 

  115. P. Li, A. Wang, and C.T. Liu, Journal of Alloys and Compounds 694, 55 (2017).

    CAS  Google Scholar 

  116. O. Schneeweiss, M. Friák, M. Dudová, D. Holec, M. Šob, D. Kriegner, V. Holý, P. Beran, E.P. George, J. Neugebauer, and A. Dlouhý, Phys. Rev. B 96, 014437 (2017).

    Google Scholar 

  117. X. Chang, M. Zeng, K. Liu, and L. Fu, Advanced Materials n/a, 1907226 (n.d.).

  118. C. Niu, C.R. LaRosa, J. Miao, M.J. Mills, and M. Ghazisaeidi, Nature Communications 9, 1 (2018).

    Google Scholar 

  119. J. Dąbrowa and M. Danielewski, Metals 10, 347 (2020).

    Google Scholar 

  120. V. Maier-Kiener, B. Schuh, E.P. George, H. Clemens, and A. Hohenwarter, Journal of Materials Research 32, 2658 (2017).

    CAS  Google Scholar 

  121. S. Sarkar, X. Ren, and K. Otsuka, Phys. Rev. Lett. 95, 205702 (2005).

    Google Scholar 

  122. Y. Wang, X. Ren, K. Otsuka, and A. Saxena, Phys. Rev. B 76, 132201 (2007).

    Google Scholar 

  123. S. Iida and H. Terauchi, J. Phys. Soc. Jpn. 52, 4044 (1983).

    CAS  Google Scholar 

  124. B.E. Vugmeister and M.D. Glinchuk, Rev. Mod. Phys. 62, 993 (1990).

    CAS  Google Scholar 

  125. D. Choudhury, P. Mandal, R. Mathieu, A. Hazarika, S. Rajan, A. Sundaresan, U.V. Waghmare, R. Knut, O. Karis, P. Nordblad, and D.D. Sarma, Phys. Rev. Lett. 108, 127201 (2012).

    CAS  Google Scholar 

  126. W. Kleemann, S. Bedanta, P. Borisov, V.V. Shvartsman, S. Miga, J. Dec, A. Tkach, and P.M. Vilarinho, Eur. Phys. J. B 71, 407 (2009).

    CAS  Google Scholar 

  127. W. Kleemann, V.V. Shvartsman, S. Bedanta, P. Borisov, A. Tkach, and P.M. Vilarinho, J. Phys.: Condens. Matter 20, 434216 (2008).

    Google Scholar 

  128. V.V. Shvartsman, S. Bedanta, P. Borisov, W. Kleemann, A. Tkach, and P.M. Vilarinho, Phys. Rev. Lett. 101, 165704 (2008).

    CAS  Google Scholar 

  129. K. Kaufmann, D. Maryanovsky, W.M. Mellor, C. Zhu, A.S. Rosengarten, T.J. Harrington, C. Oses, C. Toher, S. Curtarolo, and K.S. Vecchio, Npj Computational Materials 6, 1 (2020).

    Google Scholar 

  130. P. Sarker, T. Harrington, C. Toher, C. Oses, M. Samiee, J.-P. Maria, D.W. Brenner, K.S. Vecchio, and S. Curtarolo, Nat Commun 9, 1 (2018).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meisenheimer, P.B., Heron, J.T. Oxides and the high entropy regime: A new mix for engineering physical properties. MRS Advances 5, 3419–3436 (2020). https://doi.org/10.1557/adv.2020.295

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.295

Navigation