Skip to main content
Log in

Fabrication and Characterization of Porous Silica/Carbon Nanotube Composite Insulation

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

In recent years, the demand for high performance thermal insulations has increased. While foam and aerogels have been researched for high performance thermal insulation, novel material design is required for further improvement. A porous silica has been found to have the potential to form a new thermal insulation material. However, porous silica is a powder and is difficult to form the porous compact. Therefore, we propose a composite insulation of powdered porous silica (p-SiO2), carbon nanotubes (CNTs) and sodium carboxy methyl cellulose (CMC). The fine voids and bulky structure of p-SiO2 greatly suppress gas and solid heat transfer. The composite of CNT can improve the moldability and enhance the mechanical properties. The moldability of thermal insulating materials improved even with the addition of 1 wt% CNT. With the addition of 1 wt% CNT, the increase in thermal conductivity was less than 0.01 W⋅m−1⋅K−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Demharter, Cryogenics38 (1), 113–117 (1998).

    Article  CAS  Google Scholar 

  2. S. Lei, Q. Guo, D. Zhang, J. Shi, L. Liu and X. Wei, J. Appl. Polym. Sci. 117 (6), 3545–3550 (2010).

    CAS  Google Scholar 

  3. A. M. Papadopoulos, Energy Build. 37 (1), 77–86 (2005).

    Article  Google Scholar 

  4. A. G. Ostrogorsky, L. R. Glicksman and D. W. Reitz, Int. J. Heat Mass Transfer29 (8), 1169–1176 (1986).

    Article  CAS  Google Scholar 

  5. J. Fricke, X. Lu, P. Wang, D. Büttner and U. Heinemann, Int. J. Heat Mass Transfer35 (9), 2305–2309 (1992).

    Article  CAS  Google Scholar 

  6. G. Wei, L. Wang, L. Chen, X. Du, C. Xu and X. Zhang, Int. J. Thermophys. 36, 2953–2966 (2015).

    Article  CAS  Google Scholar 

  7. C. Bi and G. H. Tang, Int. J. Heat Mass Transfer64, 452–456 (2013).

    Article  Google Scholar 

  8. T. Xie, Y.-L. He and Z.-J. Hu, Int. J. Heat Mass Transfer58 (1–2), 540–552 (2013).

    Article  CAS  Google Scholar 

  9. G. Zu, K. Kanamori, A. Maeno, H. Kaji, and K. Nakanishi, Angew. Chem. 130, 9870–9875 (2018).

    Article  Google Scholar 

  10. Z. L. Yu, N. Yang, V. A. Kalkavoura, B. Qin, Z.-Y. Ma, W.-Y. Xing, C. Qiao, L. Bergstrom, M. Atonietti, and S-H. Yu, Angew. Chem. 130, 4628–4632 (2018).

    Article  Google Scholar 

  11. A. L. Mendes, R. F. Silva, L. Duraes, J. Mater. Chem. A. 6, 1340–1369 (2018).

    Article  Google Scholar 

  12. X. Lu, M. C. Arduini-Schuster, J. Kuhn, O. Nilsson, J. Fricke and R. W. Pekala, Science255 (5047), 971–972 (1992).

    Article  CAS  Google Scholar 

  13. H. Guo, M. A. B. Meador, L. S. McCorkle, D. A. Scheiman, J. D. McCrone, and B. Wilkewitz, RSC Advances6, 26055 (2016).

    Article  CAS  Google Scholar 

  14. F. Sabri, J. G. Marchetta, K. M. R. Faysal, A. Brock and E. Roan, Advances in Materials Science and Engineering, 796356 (2014).

  15. F. Sabri, J. Marchetta, K. M. Smith, Acta Astronautica91, 173–179 (2013).

    Article  CAS  Google Scholar 

  16. J. G. Marchetta, F. Sabari, D. S. Williams, and D. W. Pumroy, J Spacecraft Rockets55 (4), 1007–1013 (2018).

    Article  CAS  Google Scholar 

  17. I. Abe, K. Sato, H. Abe, and M. Naito, Adv. Powder Technol. 19 (4), 311–320 (2008).

    Article  CAS  Google Scholar 

  18. H. Abe, I. Abe, K. Sato, and M. Naito, J. Am. Ceram. Soc. 88 (5), 1359–1361 (2005).

    Article  CAS  Google Scholar 

  19. B. Yuan, S. Ding, D. Wang, G. Wang, and H. Li, Mater. Lett. 75, 204–206 (2012).

    Article  CAS  Google Scholar 

  20. L. W. Hrubesh and R. W. Pekala, J. Mater. Res. 9 (3), 731–738 (1994).

    Article  CAS  Google Scholar 

  21. E. A. Taft and H. R. Philipp, Phys. Rev. 138 (1A), A197–A202 (1965).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomonaga Ueno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shioura, N., Matsushima, K., Osato, T. et al. Fabrication and Characterization of Porous Silica/Carbon Nanotube Composite Insulation. MRS Advances 5, 1791–1798 (2020). https://doi.org/10.1557/adv.2020.252

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.252

Navigation