Skip to main content
Log in

Modelling of Multilayer Perforated Electrodes for Dielectric Elastomer Actuator Applications

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Dielectric elastomer actuators (DEAs), which are inherently complaint capacitors, are emerging as pseudo-muscular actuators with a wide range of applications. In order to achieve high stretchability for large DEA actuation, carbon nanotube (CNT) and other 1D materials-based electrodes are used to maintain conductance at large strains. These electrodes are typically fabricated using spray coating or filter transfer method and resemble a perforated electrode under high magnification. Hence, there can be a loss of field and stray capacitance when multiple layers of carbon nanotubes (CNTs)-based electrodes are used. This study investigates the effect of microscopic perforations on the nature of electric fields and on the capacitance of multi-layered CNT-based DEA structures with various dimensions and geometric properties of the electrodes. It has been found that the capacitance decreases with increase in the perforations however its effect is limited for a reasonable coverage. The change in normalized is found to be negligible (~5%) for an electrode coverage area of over 90%, however, the maximum output work reduces by 18.2%. This analysis is important to develop robust and reliable CNT-based DEA structures, without using excessive CNTs which can lead to increased mechanical stiffness of the electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. S. Shian, K. Bertoldi, and D. R. Clarke, Adv. Mater. 27, 6814 (2015).

    Article  CAS  Google Scholar 

  2. H. Zhao, A. M. Hussain, M. Duduta, D. M. Vogt, R. J. Wood, and D. R. Clarke, Adv. Funct. Mater. 28, 1804328 (2018).

    Article  Google Scholar 

  3. Q. Pei, R. Pelrine, S. Stanford, R. Kornbluh, and M. Rosenthal, Synth. Met. 135, 129 (2003).

    Article  Google Scholar 

  4. I. A. Anderson, T. A. Gisby, T. G. McKay, B. M. O’Brien, and E. P. Calius, J. Appl. Phys. 112, 041101 (2012).

    Article  Google Scholar 

  5. C. Löwe, X. Zhang, and G. Kovacs, Adv. Eng. Mater. 7, 361 (2005).

    Article  Google Scholar 

  6. Y. Bar-Cohen, J. Spacecr. Rockets 39, 822 (2002).

    Article  CAS  Google Scholar 

  7. B. Scrosati, Applications of electroactive polymers, (Springer, 1993) pp. 127–128.

    Book  Google Scholar 

  8. F. Carpi, P. Chiarelli, A. Mazzoldi, and D. De Rossi, Sens. Actuators A 107, 85 (2003).

    Article  CAS  Google Scholar 

  9. A. M. Hussain and M. M. Hussain, Adv. Mater. 28, 4219 (2016).

    Article  CAS  Google Scholar 

  10. A. M. Hussain, E. B. Lizardo, G. A. Torres Sevilla, J. M. Nassar, and M. M. Hussain, Adv. Healthcare Mater. 4, 665 (2015).

    Article  CAS  Google Scholar 

  11. S. Iijima and T. Ichihashi, Nature 363, 603 (1993).

    Article  CAS  Google Scholar 

  12. M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Phys. Rep. 409, 47 (2005).

    Article  Google Scholar 

  13. M. F. De Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, Science 339, 535 (2013).

    Article  Google Scholar 

  14. R. Kornbluh, R. Pelrine, F. Carpi, D. De Rossi, and P. Sommer-Larsen, “Highperformance acrylic and silicone elastomers,” Dielectric elastomers as electromechanical transducers: Fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology, ed. F. Carpi, D. De Rossi, R. Kornbluh, R. Pelrine, P. Sommer-Larsen (Elsevier, 2008) pp. 33–42.

    Chapter  Google Scholar 

  15. O. Araromi, A. Conn, C. Ling, J. Rossiter, R. Vaidyanathan, and S. Burgess, Sens. Actuators A 167, 459 (2011).

    Article  CAS  Google Scholar 

  16. S. R. Nagireddy, R. B. Mishra, K. S. C. Karnati, and A. M. Hussain, in IEEE Conference on Modeling of Systems Circuits and Devices (MOS-AK India), (Hyderabad, India, 2019), pp. 34–38.

    Book  Google Scholar 

  17. J. Grosser and H. Schulz, J. Phys. D: Appl. Phys. 22, 723 (1989).

    Article  Google Scholar 

  18. A. O’Halloran, F. O’Malley, and P. McHugh, J. Appl. Phys. 104, 071101 (2008).

    Article  Google Scholar 

  19. M. Duduta, R. J. Wood, and D. R. Clarke, Adv. Mater. 28, 8058 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aftab M. Hussain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagireddy, S.R., Charan, K.K.S., Mishra, R.B. et al. Modelling of Multilayer Perforated Electrodes for Dielectric Elastomer Actuator Applications. MRS Advances 5, 765–771 (2020). https://doi.org/10.1557/adv.2020.210

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.210

Navigation