Abstract
Dielectric elastomer actuators (DEAs), which are inherently complaint capacitors, are emerging as pseudo-muscular actuators with a wide range of applications. In order to achieve high stretchability for large DEA actuation, carbon nanotube (CNT) and other 1D materials-based electrodes are used to maintain conductance at large strains. These electrodes are typically fabricated using spray coating or filter transfer method and resemble a perforated electrode under high magnification. Hence, there can be a loss of field and stray capacitance when multiple layers of carbon nanotubes (CNTs)-based electrodes are used. This study investigates the effect of microscopic perforations on the nature of electric fields and on the capacitance of multi-layered CNT-based DEA structures with various dimensions and geometric properties of the electrodes. It has been found that the capacitance decreases with increase in the perforations however its effect is limited for a reasonable coverage. The change in normalized is found to be negligible (~5%) for an electrode coverage area of over 90%, however, the maximum output work reduces by 18.2%. This analysis is important to develop robust and reliable CNT-based DEA structures, without using excessive CNTs which can lead to increased mechanical stiffness of the electrodes.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
S. Shian, K. Bertoldi, and D. R. Clarke, Adv. Mater. 27, 6814 (2015).
H. Zhao, A. M. Hussain, M. Duduta, D. M. Vogt, R. J. Wood, and D. R. Clarke, Adv. Funct. Mater. 28, 1804328 (2018).
Q. Pei, R. Pelrine, S. Stanford, R. Kornbluh, and M. Rosenthal, Synth. Met. 135, 129 (2003).
I. A. Anderson, T. A. Gisby, T. G. McKay, B. M. O’Brien, and E. P. Calius, J. Appl. Phys. 112, 041101 (2012).
C. Löwe, X. Zhang, and G. Kovacs, Adv. Eng. Mater. 7, 361 (2005).
Y. Bar-Cohen, J. Spacecr. Rockets 39, 822 (2002).
B. Scrosati, Applications of electroactive polymers, (Springer, 1993) pp. 127–128.
F. Carpi, P. Chiarelli, A. Mazzoldi, and D. De Rossi, Sens. Actuators A 107, 85 (2003).
A. M. Hussain and M. M. Hussain, Adv. Mater. 28, 4219 (2016).
A. M. Hussain, E. B. Lizardo, G. A. Torres Sevilla, J. M. Nassar, and M. M. Hussain, Adv. Healthcare Mater. 4, 665 (2015).
S. Iijima and T. Ichihashi, Nature 363, 603 (1993).
M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Phys. Rep. 409, 47 (2005).
M. F. De Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, Science 339, 535 (2013).
R. Kornbluh, R. Pelrine, F. Carpi, D. De Rossi, and P. Sommer-Larsen, “Highperformance acrylic and silicone elastomers,” Dielectric elastomers as electromechanical transducers: Fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology, ed. F. Carpi, D. De Rossi, R. Kornbluh, R. Pelrine, P. Sommer-Larsen (Elsevier, 2008) pp. 33–42.
O. Araromi, A. Conn, C. Ling, J. Rossiter, R. Vaidyanathan, and S. Burgess, Sens. Actuators A 167, 459 (2011).
S. R. Nagireddy, R. B. Mishra, K. S. C. Karnati, and A. M. Hussain, in IEEE Conference on Modeling of Systems Circuits and Devices (MOS-AK India), (Hyderabad, India, 2019), pp. 34–38.
J. Grosser and H. Schulz, J. Phys. D: Appl. Phys. 22, 723 (1989).
A. O’Halloran, F. O’Malley, and P. McHugh, J. Appl. Phys. 104, 071101 (2008).
M. Duduta, R. J. Wood, and D. R. Clarke, Adv. Mater. 28, 8058 (2016).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nagireddy, S.R., Charan, K.K.S., Mishra, R.B. et al. Modelling of Multilayer Perforated Electrodes for Dielectric Elastomer Actuator Applications. MRS Advances 5, 765–771 (2020). https://doi.org/10.1557/adv.2020.210
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2020.210