Skip to main content
Log in

Electrical Tunability of Surface Tension of Vertical Graphene Nanosheets

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The contact angle is a material property determined by the surface tensions between substrate, liquid and the air. In this study, the surface wettability of vertical graphene nanosheets (VGNs) which are carbon nanostructures consisting of a few layers of graphene sheets vertically standing on the substrates, were developed by applying different voltages on the substrate. The contact angle of the water droplet on VGNs/Cu decreased from 123° to 16° with increasing the applied voltage which indicated the hydrophobic and hydrophilic transition of VGNs surfaces. It is anticipated that this member of the carbon material family (VGNs) could serve as a tunable wettability coting for future improvements in electronic devices and open a new perspective to the construction of smart material surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.-Y. Meng and S.-J. Park: Carbon Lett., (2014), 15, 89–104.

    Article  Google Scholar 

  2. S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, and K. Takahashi: Chem. Phys. Lett., (1999), 309, 165.

    Article  CAS  Google Scholar 

  3. Y. Wu, P. Qiao, T. Chong, and Z. Shen: Adv. Mater., (2002), 14, 64.

    Article  CAS  Google Scholar 

  4. M. Hiramatsu, K. Shiji, H. Amano, and M. Hori: Appl. Phys. Lett., 84 (2004), 4708.

    Article  CAS  Google Scholar 

  5. M. Hiramatsu and M. Hori: Jpn. J. Appl. Phys., (2006), 45, 522.

    Article  Google Scholar 

  6. H Watanabe, H. Kondo, M. Sekine, M. Hiramatsu, M. Hori: Jpn. J. Appl. Phys., (2012), 25, 01AJ07.

    Article  Google Scholar 

  7. S. Khamlich, Z. Abdullaeva, J. V. Kennedy, M. Maaza: Appl. Surf. Sci., (2017), 405, 329–336.

    Article  CAS  Google Scholar 

  8. M. Khenfouch, M. Baitoul, M. Maaza: Opt. Mater., (2012), 34 (8), 1320–1326.

    Article  CAS  Google Scholar 

  9. M. Khenfouch, M. Buttner, M. Baitoul, M. Maaza: Graphene, (2014), 3 (2), 7–13.

    Article  Google Scholar 

  10. J. J. Wang, M. Y. Zhu, R. A. Outlaw, X. Zhao, D. M. Manos, and B. C. Holloway: Appl. Phys. Lett., (2004), 85, 1265.

    Article  CAS  Google Scholar 

  11. T. Machino, W. Takeuchi, H. Kano, M. Hiramatsu, and M. Hori: Appl. Phys. Express, (2009), 2, 025001.

    Article  Google Scholar 

  12. B. E. Conway, V. Birss, and J. Wojtowicz: J. Power Sources, (1997), 66, 1.

    Article  CAS  Google Scholar 

  13. S. Khamlich, T. Khamlich, MS. Dhlamini, M. Khenfouch, BM Mothadi, M. Maaza: J. Colloid & Interface Sci., (2017), 493, 130–137.

    Article  CAS  Google Scholar 

  14. M. Maaza, BD. Ngom, M. Achouri, M. Manikandan: Vacuum, (2015), 114, 172–187.

    Article  CAS  Google Scholar 

  15. S. Iseki, T. Ohta, A. Aomatsu, M. Ito, H. Kano, Y. Higashijima, and M. Hori: Appl. Phys. Lett., (2010), 96, 153704.

    Article  Google Scholar 

  16. X. Li, L. Li, Y. Wang, H. Li and X. Bian: J. Phys. Chem. C, (2013), 117, 14106–14112.

    Article  CAS  Google Scholar 

  17. C. Melios, C. E. Giusca, V. Panchal and O. Kazakova: 2D Mater., (2018), 5, 022001.

    Article  Google Scholar 

  18. Y. Wang, S. Sinha, L. Hu and S. Das: Phys. Chem. Chem. Phys., (2017), 19, 27421–27434.

    Article  CAS  Google Scholar 

  19. F. Du, J. Huang, H. Duan, C. Xiong and J. Wang: Appl. Surf. Sci., (2018), 454, 249–255.

    Article  CAS  Google Scholar 

  20. S. Ghosh, K. Ganesan, S. R. Polaki, T. Mathews, S. Dhara, M. Kamruddin: Appl. Surf. Sci., (2015), 349, 576–581.

    Article  CAS  Google Scholar 

  21. S. Ghosh, T. Mathews, B. Gupta, A. Das, N. G. Krishna, M. Kamruddin: Nano-Structures & Nano Objects, (2017), 10, 42–50.

    Article  CAS  Google Scholar 

  22. S. Ghosh, K. Ganesan, S. R. Polaki, T. R. Ravindran, N. G. Krishna, M. Kamruddin, A. K. Tyagi: J. of Raman Spec., (2014), 45, 642–649.

    Article  CAS  Google Scholar 

  23. M. Akbari, M. Kamruddin, R. Morad, S. Khamlich, R. Bucher: Materials Today: Proceeding, http://doi.org/10.1016/j.matpr.2020.03.305.

  24. A. C. Ferrari, D. M. Basko: Nat. Nanotechnol, (2013), 8, 235–246.

    Article  CAS  Google Scholar 

  25. A. V. Baranov, A. N. Bekhterev, Y. S. Bobovich, V. I. Petrov: Opt. Spectrosc. (1987), 62, 612–616.

    Google Scholar 

  26. C. Thomsen, S. Reich: Phys. Rev. Lett., (2000), 85, 5214–5217.

    Article  CAS  Google Scholar 

  27. R. Vidano, D. B. Fischbach: J. Am. Ceram. Soc. (1978), 61, 13–17.

    Article  CAS  Google Scholar 

  28. R. J. Nemanich, S. A. Solin: Phys. Rev. B, (1979), 20, 392–401.

    Article  CAS  Google Scholar 

  29. M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cançado, A. Jorio, R. Saito: Phys. Chem. Phys., (2007), 9, 1276–1291.

    Article  CAS  Google Scholar 

  30. R. N. Wenzel: Ind. Eng. Chem., (1936), 28, 988.

    Article  CAS  Google Scholar 

  31. Z. J. Han, B. K. Tay, C. M. Tan, M. Shakerzadeh and K. Ostrikov: ACS Nano, (2009), 3, 3031.

    Article  CAS  Google Scholar 

  32. F. Mugele and J. C. Baret: J. Phys.: Condens. Matter., (2005), 17, 705.

    Google Scholar 

  33. Z. K. Wang, L. J. Ci, L. Chen, S. Nayak, P. M. Ajayan and N. Koratkar: Nano Lett., (2007), 7, 697.

    Article  CAS  Google Scholar 

  34. G. Lippmann: Ann. Chim. Phys., (1875), 5, 494.

    Google Scholar 

  35. J. Pu, S. Wan, Z. Lu, G. Zhang, L. Wang, X. Zhang, Q. Xue: J. Mater. Chem. A, (2013), 1(4), 1254–1260.

    Article  CAS  Google Scholar 

  36. D. J. Lomax, P. Kant, A. T. Williams, H. V. Patten, Y. Zou, A. Juel, R. A. W. Dryfe: Soft Matter, (2016), 12, 8798–8804.

    Article  CAS  Google Scholar 

  37. Q. G. Jiang, Z. M. Ao, D. W. Chu and Q. Jiang: J. Phys. Chem. C, (2012), 116, 19321–19326.

    Article  CAS  Google Scholar 

  38. K. Vijayarangamuthu, S. Ahn, H. Seo, S. H. Yoon, C. M. Park and K. J. Jeon: Adv. Mater., (2016), 28, 661–667.

    Article  CAS  Google Scholar 

  39. K. A. Velizhanin, N. Dandu and D. Solenov: Phys. Rev. B: Condens. Matter Mater. Phys., (2014), 89, 155414.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari, M., Kamruddin, M., Morad, R. et al. Electrical Tunability of Surface Tension of Vertical Graphene Nanosheets. MRS Advances 5, 2291–2298 (2020). https://doi.org/10.1557/adv.2020.209

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.209

Keywords

Navigation