Abstract
The contact angle is a material property determined by the surface tensions between substrate, liquid and the air. In this study, the surface wettability of vertical graphene nanosheets (VGNs) which are carbon nanostructures consisting of a few layers of graphene sheets vertically standing on the substrates, were developed by applying different voltages on the substrate. The contact angle of the water droplet on VGNs/Cu decreased from 123° to 16° with increasing the applied voltage which indicated the hydrophobic and hydrophilic transition of VGNs surfaces. It is anticipated that this member of the carbon material family (VGNs) could serve as a tunable wettability coting for future improvements in electronic devices and open a new perspective to the construction of smart material surfaces.
Similar content being viewed by others
References
L.-Y. Meng and S.-J. Park: Carbon Lett., (2014), 15, 89–104.
S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, and K. Takahashi: Chem. Phys. Lett., (1999), 309, 165.
Y. Wu, P. Qiao, T. Chong, and Z. Shen: Adv. Mater., (2002), 14, 64.
M. Hiramatsu, K. Shiji, H. Amano, and M. Hori: Appl. Phys. Lett., 84 (2004), 4708.
M. Hiramatsu and M. Hori: Jpn. J. Appl. Phys., (2006), 45, 522.
H Watanabe, H. Kondo, M. Sekine, M. Hiramatsu, M. Hori: Jpn. J. Appl. Phys., (2012), 25, 01AJ07.
S. Khamlich, Z. Abdullaeva, J. V. Kennedy, M. Maaza: Appl. Surf. Sci., (2017), 405, 329–336.
M. Khenfouch, M. Baitoul, M. Maaza: Opt. Mater., (2012), 34 (8), 1320–1326.
M. Khenfouch, M. Buttner, M. Baitoul, M. Maaza: Graphene, (2014), 3 (2), 7–13.
J. J. Wang, M. Y. Zhu, R. A. Outlaw, X. Zhao, D. M. Manos, and B. C. Holloway: Appl. Phys. Lett., (2004), 85, 1265.
T. Machino, W. Takeuchi, H. Kano, M. Hiramatsu, and M. Hori: Appl. Phys. Express, (2009), 2, 025001.
B. E. Conway, V. Birss, and J. Wojtowicz: J. Power Sources, (1997), 66, 1.
S. Khamlich, T. Khamlich, MS. Dhlamini, M. Khenfouch, BM Mothadi, M. Maaza: J. Colloid & Interface Sci., (2017), 493, 130–137.
M. Maaza, BD. Ngom, M. Achouri, M. Manikandan: Vacuum, (2015), 114, 172–187.
S. Iseki, T. Ohta, A. Aomatsu, M. Ito, H. Kano, Y. Higashijima, and M. Hori: Appl. Phys. Lett., (2010), 96, 153704.
X. Li, L. Li, Y. Wang, H. Li and X. Bian: J. Phys. Chem. C, (2013), 117, 14106–14112.
C. Melios, C. E. Giusca, V. Panchal and O. Kazakova: 2D Mater., (2018), 5, 022001.
Y. Wang, S. Sinha, L. Hu and S. Das: Phys. Chem. Chem. Phys., (2017), 19, 27421–27434.
F. Du, J. Huang, H. Duan, C. Xiong and J. Wang: Appl. Surf. Sci., (2018), 454, 249–255.
S. Ghosh, K. Ganesan, S. R. Polaki, T. Mathews, S. Dhara, M. Kamruddin: Appl. Surf. Sci., (2015), 349, 576–581.
S. Ghosh, T. Mathews, B. Gupta, A. Das, N. G. Krishna, M. Kamruddin: Nano-Structures & Nano Objects, (2017), 10, 42–50.
S. Ghosh, K. Ganesan, S. R. Polaki, T. R. Ravindran, N. G. Krishna, M. Kamruddin, A. K. Tyagi: J. of Raman Spec., (2014), 45, 642–649.
M. Akbari, M. Kamruddin, R. Morad, S. Khamlich, R. Bucher: Materials Today: Proceeding, http://doi.org/10.1016/j.matpr.2020.03.305.
A. C. Ferrari, D. M. Basko: Nat. Nanotechnol, (2013), 8, 235–246.
A. V. Baranov, A. N. Bekhterev, Y. S. Bobovich, V. I. Petrov: Opt. Spectrosc. (1987), 62, 612–616.
C. Thomsen, S. Reich: Phys. Rev. Lett., (2000), 85, 5214–5217.
R. Vidano, D. B. Fischbach: J. Am. Ceram. Soc. (1978), 61, 13–17.
R. J. Nemanich, S. A. Solin: Phys. Rev. B, (1979), 20, 392–401.
M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cançado, A. Jorio, R. Saito: Phys. Chem. Phys., (2007), 9, 1276–1291.
R. N. Wenzel: Ind. Eng. Chem., (1936), 28, 988.
Z. J. Han, B. K. Tay, C. M. Tan, M. Shakerzadeh and K. Ostrikov: ACS Nano, (2009), 3, 3031.
F. Mugele and J. C. Baret: J. Phys.: Condens. Matter., (2005), 17, 705.
Z. K. Wang, L. J. Ci, L. Chen, S. Nayak, P. M. Ajayan and N. Koratkar: Nano Lett., (2007), 7, 697.
G. Lippmann: Ann. Chim. Phys., (1875), 5, 494.
J. Pu, S. Wan, Z. Lu, G. Zhang, L. Wang, X. Zhang, Q. Xue: J. Mater. Chem. A, (2013), 1(4), 1254–1260.
D. J. Lomax, P. Kant, A. T. Williams, H. V. Patten, Y. Zou, A. Juel, R. A. W. Dryfe: Soft Matter, (2016), 12, 8798–8804.
Q. G. Jiang, Z. M. Ao, D. W. Chu and Q. Jiang: J. Phys. Chem. C, (2012), 116, 19321–19326.
K. Vijayarangamuthu, S. Ahn, H. Seo, S. H. Yoon, C. M. Park and K. J. Jeon: Adv. Mater., (2016), 28, 661–667.
K. A. Velizhanin, N. Dandu and D. Solenov: Phys. Rev. B: Condens. Matter Mater. Phys., (2014), 89, 155414.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Akbari, M., Kamruddin, M., Morad, R. et al. Electrical Tunability of Surface Tension of Vertical Graphene Nanosheets. MRS Advances 5, 2291–2298 (2020). https://doi.org/10.1557/adv.2020.209
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2020.209