Abstract
In the present study we employ electronic structure calculations (based on Density Functional Theory -DFT approach) and Fully Atomistic Reactive Molecular Dynamics (FARMD) simulations (based on ReaxFF reactive force field) to evaluate the reactivity of branched polyfuran (PF) derivatives and identify promising systems for chemical sensing. Condensed-to-atoms Fukui indexes (CAFI) were employed to identify the most reactive sites on the oligomers structure. The chemical sensing abilities of the most promising systems were evaluated via FARMD simulations in the presence of distinct gaseous compounds. The results indicate the derivatives PF-CCH and PF-NO2 (i.e. CCH and NO2 as side groups) as the most promising systems for chemical sensor applications, presenting higher reactivity on the most accessible sites. An interesting correspondence between DFT and MD results was also identified, suggesting the plausibility of using CAFI parameters for the identification of improved materials for chemical sensors.
Similar content being viewed by others
References
X. Liu, S. Cheng, H. Liu, et al., Sensors 12, 9635 (2012).
L. Fortuna, Soft sensors for monitoring and control of industrial processes, 1st ed., Springer: London, 2007.
M. Hrubovčáková, E. Dudrová, E. Hryha, et al., Adv. Mater. Sci. Eng. 2013, 1 (2013).
P. Villoria-Sáez, V. W. Y. Tam, would like to thank M. del Río Merino, et al., J. Clean. Prod. 127, 49 (2016).
H. Bai, G. Shi, Sensors 7, 267 (2007).
H. Yoon, Nanomaterials 3, 524 (2013).
G. E. Zaikov, Interaction of polymers with polluted atmosphere nitrogen oxides, 1st ed., iSmithers: Shawbury, 2009.
W. Zeng, M. Q. Zhang, M. Z. Rong, Q. Zheng, Sens. Actuators B Chem. 124, 118 (2007).
S. Sharma, N. Zamoshchik, M. Bendikov, Isr. J. Chem. 54, 712 (2014).
A. Gandini, Prog. Polym. Sci. 22, 1203 (1997).
F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry: Part A: Structure and Mechanisms, 1st ed. Springer Science & Business Media, 2007.
E. F. Oliveira, F. C. Lavarda, Polym. Eng. Sci. 56, 479 (2016).
E. F. Oliveira, F. C. Lavarda, Mater. Chem. Phys. 148, 923 (2014).
J. J. P. Stewart, J. Mol. Model. 13, 1173 (2007).
J. J. P. Stewart, MOPAC2016. Stewart Computational Chemistry, Colorado Springs, CO, USA, 2018
A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09. Gaussian, Inc., Wallingford, CT, 2009.
W. Yang, W. J Mortier, J. Am. Chem. Soc. 108, 5708 (1986).
A. Batagin-Neto, E.S. Bronze-Uhle, M. Vismara, et al., Curr. Phys. Chem. 3, 431 (2013).
E. S. Bronze-Uhle, A. Batagin-Neto, F. C. Lavarda, C. F. O. Graeff, J. Appl. Phys. 110, 073510 (2011).
I. Cesarino, R. P. Simões, F. C. Lavarda, A. Batagin-Neto, Electrochimica Acta 192, 8 (2016).
L. M. Martins, S. de Faria Vieira, G. B. Baldacim, et al., Dyes Pigments 148, 81 (2018).
L. O. Mandú, A. Batagin-Neto, J. Mol. Model 24, 157 (2018).
R. A. Maia, G. Ventorim, A. Batagin-Neto, J. Mol. Model. 25, 228 (2019).
J. do Amaral Rodrigues, A. R. de Araújo, N. A. Pitombeira, et al., Int. J. Biol. Macromol. 128, 965 (2019).
A. Rodrigues de Araújo, B. Iles, K. de Melo Nogueira, et al., Mart. J. Ethnopharmacol. 240, 111941 (2019).
R. K. Roy, S. Pal, K. Hirao, J. Chem. Phys. 110, 8236 (1999).
F. De Proft, C. Van Alsenoy, A. Peeters A, et al., J. Comput. Chem. 23, 1198 (2002).
A. R. Leach, Molecular Modelling: Principles and Applications, 1st ed. Prentice Hall, 2001
A. C. T. van Duin, S. Dasgupta, F. Lorant, W. A. Goddard, J. Phys. Chem. A 105, 9396 (2001)
D. Fantauzzi, J. E. Mueller, L. Sabo, et al., Chem. Phys. Chem. 16, 2797 (2015).
S. J. Plimpton, Comput. Phys. 117, 1 (1995).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Lascane, L.G., Oliveira, E.F. & Batagin-Neto, A. Polyfuran-based chemical sensors: reactivity analysis via Fukui indexes and reactive molecular dynamics. MRS Advances 5, 497–503 (2020). https://doi.org/10.1557/adv.2020.203
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2020.203