Abstract
Achieving control over the morphology of conjugated polymer (CP) blends at nanoscale is crucial for enhancing their performances in diverse organic optoelectronic devices, including thin film transistors, photovoltaics, and light emitting diodes. However, the complex CP chemical structures and intramolecular interactions often make such control difficult to implement. We demonstrate here that cooperative combination of non-covalent interactions, including hydrogen bonding, coordination interactions, and π-π interactions, etc., can be used to effectively define the morphology of CP blend films, in particular being able to achieve accurate spatial arrangement of nanoparticles within CP nanostructures. Through UV-vis absorption spectroscopy and transmission electron microscopy, we show strong attachment of fullerene molecules, CdSe quantum dots, and iron oxide nanoparticles, onto well-defined CP nanofibers. The resulting core/shell hybrid nanofibers exhibit well-defined donor/acceptor interface when employed in photovoltaic devices, which also contributes to enhanced charge separation and transport. These findings provide a facile new methodology of improving CP/nanoparticle interfacial properties and controlling blend morphology. The generality of this methodology demonstrated in current studies points to a new way of designing hybrid materials based on organic polymers and inorganic nanoparticles towards applications in modern electronic devices.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Referennces
G. Horowitz, Adv. Mater. 10, 365 (1998).
A. Facchetti, Mater. Today 10, 28 (2007).
C. Wang, H. Dong, W. Hu, Y. Liu and D. Zhu, Chem. Rev. 112, 2208 (2012).
B. C. Thompson and J. M. Fréchet, Angew. Chem. 47, 58 (2008).
G. Dennler, M. C. Scharber and C. J. Brabec, Adv. Mater. 21, 1323 (2009).
Y.-J. Cheng, S.-H. Yang and C.-S. Hsu, Chem. Rev. 109, 5868 (2009).
J. Chen and Y. Cao, Acc. Chem. Res 42, 1709 (2009).
C. J. Brabec, S. Gowrisanker, J. J. Halls, D. Laird, S. Jia and S. P. Williams, Adv. Mater. 22, 3839 (2010).
M. S. AlSalhi, J. Alam, L. A. Dass and M. Raja, Int. J. Mol. Sci. 12, 2036 (2011).
R. Friend, R. Gymer, A. Holmes, J. Burroughes, R. Marks, C. Taliani, D. Bradley, D. Dos Santos, J. Bredas and M. Lögdlund, Nature 397, 121 (1999).
T. D. Nielsen, C. Cruickshank, S. Foged, J. Thorsen and F. C. Krebs, Sol. Energy Mater. Sol. Cells 94, 1553 (2010).
M. Jørgensen, J. E. Carlé, R. R. Søndergaard, M. Lauritzen, N. A. Dagnæs-Hansen, S. L. Byskov, T. R. Andersen, T. T. Larsen-Olsen, A. P. Böttiger and B. Andreasen, Sol. Energy Mater. Sol. Cells 119, 84 (2013).
C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).
J. Halls, C. Walsh, N. C. Greenham, E. Marseglia, R. H. Friend, S. Moratti and A. Holmes, Nature 376, 498 (1995).
G. Yu and A. J. Heeger, J. Appl. Phys. 78, 4510 (1995).
A. Facchetti, Mater. Today 16, 123 (2013).
G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science 270, 1789 (1995).
J. E. Anthony, A. Facchetti, M. Heeney, S. R. Marder and X. Zhan, Adv. Mater. 22, 3876 (2010).
W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, Science 295, 2425 (2002).
B. Sun, E. Marx and N. C. Greenham, Nano Lett. 3, 961 (2003).
W. J. Beek, M. M. Wienk, M. Kemerink, X. Yang and R. A. Janssen, J. Phys. Chem. B 109, 9505 (2005).
S.-S. Li and C.-W. Chen, J. Mater. Chem. A 1, 10574 (2013).
J. J. Halls, K. Pichler, R. H. Friend, S. Moratti and A. Holmes, Appl. Phys. Lett. 68, 3120 (1996).
Y. Huang, E. J. Kramer, A. J. Heeger and G. C. Bazan, Chem. Rev. 114, 7006 (2014).
C. J. Brabec, M. Heeney, I. McCulloch and J. Nelson, Chem. Soc. Rev. 40, 1185 (2011).
X. Yang, J. Loos, S. C. Veenstra, W. J. Verhees, M. M. Wienk, J. M. Kroon, M. A. Michels and R. A. Janssen, Nano Lett. 5, 579 (2005).
H. Tang, G. Lu, L. Li, J. Li, Y. Wang and X. Yang, J. Mater. Chem. 20, 683 (2010).
J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger and G. C. Bazan, Nat. Mater. 6, 497 (2007).
S. Samitsu, T. Shimomura, S. Heike, T. Hashizume and K. Ito, Macromolecules 43, 7891 (2010).
E. T. Niles, J. D. Roehling, H. Yamagata, A. J. Wise, F. C. Spano, A. J. Moulé and J. K. Grey, J. Phys. Chem. Lett. 3, 259 (2012).
K. J. Ihn, J. Moulton and P. Smith, J. Polym. Sci. 31, 735 (1993).
N. Kiriy, E. Jähne, H.-J. Adler, M. Schneider, A. Kiriy, G. Gorodyska, S. Minko, D. Jehnichen, P. Simon and A. A. Fokin, Nano Lett. 3, 707 (2003).
S. Samitsu, T. Shimomura, S. Heike, T. Hashizume and K. Ito, Macromolecules 41, 8000 (2008).
J. D. Roehling, I. Arslan and A. J. Moulé, J. Mater. Chem. 22, 2498 (2012).
W. Xu, L. Li, H. Tang, H. Li, X. Zhao and X. Yang, J. Phys. Chem. B 115, 6412 (2011).
S. Berson, R. De Bettignies, S. Bailly and S. Guillerez, Adv. Funct. Mater. 17, 1377 (2007).
H. Xin, F. S. Kim and S. A. Jenekhe, J. Am. Chem. Soc. 130, 5424 (2008).
J. S. Kim, J. H. Lee, J. H. Park, C. Shim, M. Sim and K. Cho, Adv. Funct. Mater. 21, 480 (2011).
J.-H. Kim, M. Kim, H. Jinnai, T. J. Shin, H. Kim, J. H. Park, S. B. Jo and K. Cho, ACS Appl. Mater. Interfaces 6, 5640 (2014).
M. Sommer, S. Huettner and M. Thelakkat, J. Mater. Chem. 20, 10788 (2010).
S. Miyanishi, Y. Zhang, K. Tajima and K. Hashimoto, ChemComm 46, 6723 (2010).
P. D. Topham, A. J. Parnell and R. C. Hiorns, J. Polym. Sci. 49, 1131 (2011).
I. Botiz, R. D. Schaller, R. Verduzco and S. B. Darling, J. Phys. Chem. C 115, 9260 (2011).
R. Verduzco, I. Botiz, D. L. Pickel, S. M. Kilbey, K. Hong, E. Dimasi and S. B. Darling, Macromolecules 44, 530 (2011).
A. M. Ramos, M. T. Rispens, J. K. van Duren, J. C. Hummelen and R. A. Janssen, J. Am. Chem. Soc. 123, 6714 (2001).
F. Zhang, M. Svensson, M. R. Andersson, M. Maggini, S. Bucella, E. Menna and O. Inganäs, Adv. Mater. 13, 1871 (2001).
Z. a. Tan, J. Hou, Y. He, E. Zhou, C. Yang and Y. Li, Macromolecules 40, 1868 (2007).
M. Li, P. Xu, J. Yang and S. Yang, J. Mater. Chem. 20, 3953 (2010).
Y. C. Lai, K. Ohshimizu, A. Takahashi, J. C. Hsu, T. Higashihara, M. Ueda and W. C. Chen, J. Polym. Sci. 49, 2577 (2011).
L. Chen, S. Peng and Y. Chen, ACS Appl. Mater. Interfaces 6, 8115 (2014).
K. Yao, L. Chen, F. Li, P. Wang and Y. Chen, J. Phys. Chem. C 116, 714 (2012).
Y. Lin, J. A. Lim, Q. Wei, S. C. Mannsfeld, A. L. Briseno and J. J. Watkins, Chem. Mater. 24, 622 (2012).
W.-C. Yen, Y.-H. Lee, J.-F. Lin, C.-A. Dai, U.-S. Jeng and W.-F. Su, Langmuir 27, 109 (2011).
K. Palaniappan, N. Hundt, P. Sista, H. Nguyen, J. Hao, M. P. Bhatt, Y. Y. Han, E. A. Schmiedel, E. E. Sheina and M. C. Biewer, J. Polym. Sci. 49, 1802 (2011).
F. Li, Y. Shi, K. Yuan and Y. Chen, New J. Chem. 37, 195 (2013).
F. Li, J. Yang and Y. Qin, J. Polym. Sci. 51, 3339 (2013).
F. Li, K. G. Yager, N. M. Dawson, J. Yang, K. J. Malloy and Y. Qin, Macromolecules 46, 9021 (2013).
F. Li, K. G. Yager, N. M. Dawson, Y.-B. Jiang, K. J. Malloy and Y. Qin, Chem. Mater. 26, 3747 (2014).
B. W. Watson, L. Meng, C. Fetrow and Y. Qin, Polymers 8, 408 (2016).
R. C. Shallcross, G. S. Chawla, F. S. Marikkar, S. Tolbert, J. Pyun and N. R. Armstrong, ACS Nano 3, 3629 (2009).
Z. Xu, C. Shen, Y. Hou, H. Gao and S. Sun, Chem. Mater. 21, 1778 (2009).
E. E. Sheina, J. Liu, M. C. Iovu, D. W. Laird and R. D. McCullough, Macromolecules 37, 3526 (2004).
M. C. Iovu, E. E. Sheina, R. R. Gil and R. D. McCullough, Macromolecules 38, 8649 (2005).
T. Yokozawa and A. Yokoyama, Chem. Rev. 109, 5595 (2009).
L. Li, G. Lu and X. Yang, J. Mater. Chem. 18, 1984 (2008).
S. Sun, T. Salim, L. H. Wong, Y. L. Foo, F. Boey and Y. M. Lam, J. Mater. Chem. 21, 377 (2011).
F. C. Spano, Chem. Phys. 325, 22 (2006).
F. C. Spano, Acc. Chem. Res 43, 429 (2010).
E. Zen’kevich, E. Sagun, A. Yarovoi, A. Shul’ga, V. Knyukshto, A. Stupak and C. Von Borczyskowski, Opt. Spectrosc. 103, 958 (2007).
R. D. Harris, S. Bettis Homan, M. Kodaimati, C. He, A. B. Nepomnyashchii, N. K. Swenson, S. Lian, R. Calzada and E. A. Weiss, Chem. Rev. 116, 12865 (2016).
M. A. Boles, D. Ling, T. Hyeon and D. V. Talapin, Nat. Mater. 15, 141 (2016).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Meng, L., Fan, H., Lane, J.M.D. et al. Bottom-Up Approaches for Precisely Nanostructuring Hybrid Organic/Inorganic Multi-Component Composites for Organic Photovoltaics. MRS Advances 5, 2055–2065 (2020). https://doi.org/10.1557/adv.2020.196
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2020.196