Skip to main content

Advertisement

Log in

Influence of C-implanted ions on the transition properties of VO2 thin films

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The study report on Vanadium dioxide thin films of about 100nm thickness deposited using pulsed laser deposition on Si (100). The novel phase change reported is attributed to the post-treatment of the films via ion implantation with 25 KeV C+ ion beam at varying particle fluence (1E15, 1E16, and 1E17 /cm2). At the initial fluence, the preferred phase is retained while amorphization and recrystallization of the film is observed as the fluence increase to 1E16 ions/cm2and 1E17 ions/cm2, respectively. The phase transition of the samples is observed to occur at a temperature below 320 K while stabilization of the low phase structure is observed for the middle fluence. Further increase restores the SMT behaviour/trend that occurred at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berglund C. N. & Guggenheim H. J. Electronic Properties of VO2 near the Semiconductor-Metal Transition. Phys. Rev. (1969).

    Google Scholar 

  2. Morin F. J. Oxides which show a metal-to-insulator transition at the neel temperature. Phys. Rev. Lett. (1959).

    Google Scholar 

  3. Goodenough J. B. The two components of the crystallographic transition in VO2. J. Solid State Chem. (1971).

    Google Scholar 

  4. Granqvist C. G. Switchable glazing technology for eco-efficient construction. in Nanotechnology in Eco-Efficient Construction: Materials, Processes and Applications (2013).

    Google Scholar 

  5. Maaza M. Optoelectronic Ultrafast Tunability in VO2 Based Mott/Peierls Nanostructures. Ann Nanosci Nanotechnol. 2017; 1 (1), 1002.

    Google Scholar 

  6. Gurvitch M., Luryi S., Polyakov A. & Shabalov A. Nonhysteretic behavior inside the hysteresis loop of VO 2 and its possible application in infrared imaging. J. Appl. Phys. (2009).

    Google Scholar 

  7. Niklaus F., Vieider C. & Jakobsen H. MEMS-based uncooled infrared bolometer arrays: a review. in MEMS/MOEMS Technologies and Applications III (2007).

    Google Scholar 

  8. Newns D. M. et al. Mott transition field effect transistor. Appl. Phys. Lett. (1998).

    Google Scholar 

  9. Nakano M. et al. Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature (2012).

    Google Scholar 

  10. Wang K. et al. Performance limits of microactuation with vanadium dioxide as a solid engine. ACS Nano (2013).

    Google Scholar 

  11. Oh D. W., Ko C., Ramanathan S. & Cahill D. G. Thermal conductivity and dynamic heat capacity across the metal-insulator transition in thin film VO2. Appl. Phys. Lett. (2010).

    Google Scholar 

  12. Zhou Y. et al. Voltage-triggered ultrafast phase transition in vanadium dioxide switches. IEEE Electron Device Lett. (2013).

    Google Scholar 

  13. Choe H. S. et al. Enhancing Modulation of Thermal Conduction in Vanadium Dioxide Thin Film by Nanostructured Nanogaps. Sci. Rep. (2017).

    Google Scholar 

  14. Zhu J. et al. Temperature-gated thermal rectifier for active heat flow control. Nano Lett. (2014).

    Google Scholar 

  15. Kats M. A. et al. Vanadium dioxide as a natural disordered metamaterial: Perfect thermal emission and large broadband negative differential thermal emittance. Phys. Rev. X (2014).

  16. Liu L., Kang L., Mayer T. S. & Werner D. H. Hybrid metamaterials for electrically triggered multifunctional control. Nat. Commun. (2016).

    Google Scholar 

  17. Dong K. et al. A Lithography-Free and Field-Programmable Photonic Metacanvas. Adv. Mater. (2018).

    Google Scholar 

  18. Liu K., Lee S., Yang S., Delaire O. & Wu J. Recent progresses on physics and applications of vanadium dioxide. Materials Today (2018).

    Google Scholar 

  19. Wan J., Ren Q., Wu N. & Gao Y. Density functional theory study of M-doped (M = B, C, N, Mg, Al) VO2 nanoparticles for thermochromic energy-saving foils. J. Alloys Compd. 662, 621–627 (2016).

    Article  CAS  Google Scholar 

  20. Maaza M., Nemraoui O., Sella C. & Beye A. C. Surface plasmon resonance tunability in Au-VO2 thermochromic nano-composites. Gold Bull. (2005).

    Google Scholar 

  21. Simo A. et al. VO2 nanostructures based chemiresistors for low power energy consumption hydrogen sensing. Int. J. Hydrogen Energy (2014).

    Google Scholar 

  22. Kana Kana J. B. et al. Thermochromic nanocrystalline Au-VO2 composite thin films prepared by radiofrequency inverted cylindrical magnetron sputtering. Thin Solid Films (2010).

    Google Scholar 

  23. Maaza M. et al. Optical limiting in pulsed laser deposited VO 2 nanostructures. Opt. Commun. (2012).

    Google Scholar 

  24. Kana Kana J. B. et al. High substrate temperature induced anomalous phase transition temperature shift in sputtered VO2 thin films. Opt. Mater. (Amst). (2010).

    Google Scholar 

  25. Derkaoui I. et al. Experimental Investigation of the Effect of Graphene Nanosheets on the Optical-Electrical Properties of Vanadium Oxide Nanocomposites. Graphene (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Mabakachaba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mabakachaba, B.M., Madiba, I.G., Khanyile, B.S. et al. Influence of C-implanted ions on the transition properties of VO2 thin films. MRS Advances 5, 2139–2146 (2020). https://doi.org/10.1557/adv.2020.137

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.137

Navigation