Abstract
The study report on Vanadium dioxide thin films of about 100nm thickness deposited using pulsed laser deposition on Si (100). The novel phase change reported is attributed to the post-treatment of the films via ion implantation with 25 KeV C+ ion beam at varying particle fluence (1E15, 1E16, and 1E17 /cm2). At the initial fluence, the preferred phase is retained while amorphization and recrystallization of the film is observed as the fluence increase to 1E16 ions/cm2and 1E17 ions/cm2, respectively. The phase transition of the samples is observed to occur at a temperature below 320 K while stabilization of the low phase structure is observed for the middle fluence. Further increase restores the SMT behaviour/trend that occurred at elevated temperatures.
Similar content being viewed by others
References
Berglund C. N. & Guggenheim H. J. Electronic Properties of VO2 near the Semiconductor-Metal Transition. Phys. Rev. (1969).
Morin F. J. Oxides which show a metal-to-insulator transition at the neel temperature. Phys. Rev. Lett. (1959).
Goodenough J. B. The two components of the crystallographic transition in VO2. J. Solid State Chem. (1971).
Granqvist C. G. Switchable glazing technology for eco-efficient construction. in Nanotechnology in Eco-Efficient Construction: Materials, Processes and Applications (2013).
Maaza M. Optoelectronic Ultrafast Tunability in VO2 Based Mott/Peierls Nanostructures. Ann Nanosci Nanotechnol. 2017; 1 (1), 1002.
Gurvitch M., Luryi S., Polyakov A. & Shabalov A. Nonhysteretic behavior inside the hysteresis loop of VO 2 and its possible application in infrared imaging. J. Appl. Phys. (2009).
Niklaus F., Vieider C. & Jakobsen H. MEMS-based uncooled infrared bolometer arrays: a review. in MEMS/MOEMS Technologies and Applications III (2007).
Newns D. M. et al. Mott transition field effect transistor. Appl. Phys. Lett. (1998).
Nakano M. et al. Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature (2012).
Wang K. et al. Performance limits of microactuation with vanadium dioxide as a solid engine. ACS Nano (2013).
Oh D. W., Ko C., Ramanathan S. & Cahill D. G. Thermal conductivity and dynamic heat capacity across the metal-insulator transition in thin film VO2. Appl. Phys. Lett. (2010).
Zhou Y. et al. Voltage-triggered ultrafast phase transition in vanadium dioxide switches. IEEE Electron Device Lett. (2013).
Choe H. S. et al. Enhancing Modulation of Thermal Conduction in Vanadium Dioxide Thin Film by Nanostructured Nanogaps. Sci. Rep. (2017).
Zhu J. et al. Temperature-gated thermal rectifier for active heat flow control. Nano Lett. (2014).
Kats M. A. et al. Vanadium dioxide as a natural disordered metamaterial: Perfect thermal emission and large broadband negative differential thermal emittance. Phys. Rev. X (2014).
Liu L., Kang L., Mayer T. S. & Werner D. H. Hybrid metamaterials for electrically triggered multifunctional control. Nat. Commun. (2016).
Dong K. et al. A Lithography-Free and Field-Programmable Photonic Metacanvas. Adv. Mater. (2018).
Liu K., Lee S., Yang S., Delaire O. & Wu J. Recent progresses on physics and applications of vanadium dioxide. Materials Today (2018).
Wan J., Ren Q., Wu N. & Gao Y. Density functional theory study of M-doped (M = B, C, N, Mg, Al) VO2 nanoparticles for thermochromic energy-saving foils. J. Alloys Compd. 662, 621–627 (2016).
Maaza M., Nemraoui O., Sella C. & Beye A. C. Surface plasmon resonance tunability in Au-VO2 thermochromic nano-composites. Gold Bull. (2005).
Simo A. et al. VO2 nanostructures based chemiresistors for low power energy consumption hydrogen sensing. Int. J. Hydrogen Energy (2014).
Kana Kana J. B. et al. Thermochromic nanocrystalline Au-VO2 composite thin films prepared by radiofrequency inverted cylindrical magnetron sputtering. Thin Solid Films (2010).
Maaza M. et al. Optical limiting in pulsed laser deposited VO 2 nanostructures. Opt. Commun. (2012).
Kana Kana J. B. et al. High substrate temperature induced anomalous phase transition temperature shift in sputtered VO2 thin films. Opt. Mater. (Amst). (2010).
Derkaoui I. et al. Experimental Investigation of the Effect of Graphene Nanosheets on the Optical-Electrical Properties of Vanadium Oxide Nanocomposites. Graphene (2016).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mabakachaba, B.M., Madiba, I.G., Khanyile, B.S. et al. Influence of C-implanted ions on the transition properties of VO2 thin films. MRS Advances 5, 2139–2146 (2020). https://doi.org/10.1557/adv.2020.137
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2020.137