Skip to main content
Log in

Design of Novel Deep Ultra-Violet ac-Driven Electroluminescence Devices Based on Boron Nitride nano-Materials

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The hexagonal boron nitride (h-BN) as a wide bandgap semiconductor is an attractive material for deep ultraviolet (DUV) generation. In this paper we study the prospect of using the stacking hexagonal boron nitride nanosheets (h-BNNS) for generating DUV emission by impact excitation in alternating current driven thin electroluminescence devices (ACTEL) based on BN phosphors having different morphologies. A theoretical approach considered is based on the impact excitation model for generating DUV from stacking h-BNNS under a high electric field. It was found that in the h-BNNS with a thickness of 90 nm biased at 3.33×109 V/m, the quantum yield can reach to 86.8%, and the power conversion efficiency of 1.68%. To achieve the same quantum yield and power conversion efficiency for the ACTEL based on h-BN single crystal, the active phosphor layer should be 2 μm thick when biased at 1.5×108 V/m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Watanabe, T. Taniguchi, and H. Kanda, Nat. Mater. 3 (6), 404–409 (2004).

    Article  CAS  Google Scholar 

  2. S. Larach and R.E. Shrader, Phys. Rev. 104, 68 (1956) and references therein (b) L. Simon and R.E. Shrader, U.S. Patent No. US2921218A (12 Jan, 1960).

    Article  CAS  Google Scholar 

  3. Y. Kubota, K. Watanabe, O. Tsuda, and T. Taniguchi, Science 317 (5840), 932–934 (2007).

    Article  CAS  Google Scholar 

  4. T. Taniguchi, Rev. High-Pressure Sci. and Technol. 29 (2), 121–128 (2019).

    Article  Google Scholar 

  5. S. H. Lee, H. Jeong, D. Y. Kim, S. Y. Seo, C. Han, O. F. N. Okello, J. I. Lo, Y. C. Peng, C. H. Oh, G. W. Lee, J. I. Shim, B. M. Cheng, K. Song, S. Y. Choi, M. H. Jo, and J. K. Kim, Opt. Express 27, 19692 (2019)

    Article  CAS  Google Scholar 

  6. T.C. Doan, J. Li, J.Y. Lin, and H.X. Jiang, AIP Adv 4 (10), 107126 (2014).

    Article  Google Scholar 

  7. H.X. Jiang and J.Y. Lin, Semicond. Sci. Technol. 29 (8), 084003 (2014).

    Article  Google Scholar 

  8. D. Li, K. Jiang, X. Sun, and C. Guo, Adv. Opt. Photonics 10 (1), 43 (2018).

    Article  CAS  Google Scholar 

  9. H. Hirayama, in: Light-Emitting Diode- An Outlook on the Empirical Features and It Recent Technological Advancements, edited by J. Thirumalai (IntechOpen, London, 2018), pp127–158.

  10. Y. Chen, H. Wu, E. Han, G. Yue, Z. Chen, Z. Wu, G. Wang, and H. Jiang, Appl. Phys. Lett. 106 (16), 162102 (2015).

    Article  Google Scholar 

  11. T. Wunderer, J. E. Northrup, and N. M. Johnson, in: III-Nitride Ultraviolet Emitters Springer Series in Materials Science, edited by M. Kneissl and J. Rass (Springer, Cham, 2015), pp. 193–217.

  12. D.R. Vij, The Handbook of Electroluminescent Materials (IoP, Institut of Physics, Bristol UK, 2004).

    Book  Google Scholar 

  13. E. Bringuier, J. Appl. Phys. 70 (8), 4505–4512 (1991).

    Article  CAS  Google Scholar 

  14. K.A. Mengle and E. Kioupakis, APL Mater 7 (2), 021106 (2019).

    Article  Google Scholar 

  15. E. Bringuier, Phys. Rev. B. 49, 7974 (1994).

    Article  CAS  Google Scholar 

  16. A.V. Hippel and R. S. Alger, Physical Review 76, 127 (1949).

    Article  Google Scholar 

  17. H. Fröhlich, Royal Soc. A 160 (901), 230 (1937).

    Google Scholar 

  18. T. E. Wickramasinghe, M.S. thesis, Ohi University, 2019. Retrieved from https://etd.ohiolink.edu/pg_10?::NO:10:P10_ETD_SUBID:181684

    Google Scholar 

  19. P. Zalm, Philips Res. Rep. 11(5), 353–399 (1956). (b) P. Zalm, Philips Res. Rep 11(6), 417-451 (1956).

    CAS  Google Scholar 

  20. O. Kurakevych and V. Solozhenko, Molecules 21 (10), 1399 (2016).

    Article  Google Scholar 

  21. P. Feng, M. Sajjad, E.Y. Li, H. Zhang, J. Chu, A. Aldalbahi, and G. Morell, Beilstein J. Nanotechnol. 5, 1186–1192 (2014).

    Article  Google Scholar 

  22. M. Sajjad, W.M. Jadwisienczak, and P. Feng, Nanoscale 6 (9), 4577–4582 (2014).

    Article  CAS  Google Scholar 

  23. R. Kosydar, W. Mroz, M. Jelinek, and T. Kocourek, in: Functional Properties of Nanostructured Materials NATO Science Series II: Mathematics, Physics and Chemistry, edited by R. Kassing, P. Petkov, W. Kulisch, and C. Popov (Springer, Dordrecht, 2006), pp. 295–298.

  24. R. Bourrellier, M. Amato, L.H.G. Tizei, C. Giorgetti, A. Gloter, M.I. Heggie, K. March, O. Stéphan, L. Reining, M. Kociak, and A. Zobelli, ACS Photonics 1 (9), 857–862 (2014).

    Article  CAS  Google Scholar 

  25. R.M. Ribeiro and N.M.R. Peres, Phys. Rev. B 83, 235312 (2011).

    Article  Google Scholar 

  26. G. Cassabois, P. Valvin, and B. Gil, Phys. Rev. B 93, 1 (2016).

    Article  Google Scholar 

  27. S. Kasap, C. Koughia, and H.E. Ruda, Springer Handbook of Electronic and Photoni Materials (Springer Cham, 2017), pp. 30, 31, 32.

    Book  Google Scholar 

  28. B.K. Ridley, J. Phys. C Solid State Phys. 16 (17), 3373–3388 (1983).

    Article  CAS  Google Scholar 

  29. Y. Hattori, T. Taniguchi, K. Watanabe, and K. Nagashio, Phys. Rev. B 97, 045425 (2018).

    Article  CAS  Google Scholar 

  30. G. Neumark, Phys. Rev. 116 (6), 1425 (1959).

    Article  CAS  Google Scholar 

  31. G.H. Lee, Y.J. Yu, C. Lee, C. Dean, K.L. Shepard, P. Kim, and J. Hone, Appl. Phys. Lett. 99 (24), 243114 (2011).

    Article  Google Scholar 

  32. D. Liljequist, Radiat. Phys. Chem. 81, 1703 (2012)

    Article  CAS  Google Scholar 

  33. J. Kotakoski, C.H. Jin, O. Lehtinen, K. Suenaga, and A. V. Krasheninnikov, Phys. Rev. B 82 (11), 113404 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, W., Wickramasinghe, T.E. & Jadwisienczak, W.M. Design of Novel Deep Ultra-Violet ac-Driven Electroluminescence Devices Based on Boron Nitride nano-Materials. MRS Advances 5, 421–430 (2020). https://doi.org/10.1557/adv.2020.134

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.134

Navigation