Abstract
The hexagonal boron nitride (h-BN) as a wide bandgap semiconductor is an attractive material for deep ultraviolet (DUV) generation. In this paper we study the prospect of using the stacking hexagonal boron nitride nanosheets (h-BNNS) for generating DUV emission by impact excitation in alternating current driven thin electroluminescence devices (ACTEL) based on BN phosphors having different morphologies. A theoretical approach considered is based on the impact excitation model for generating DUV from stacking h-BNNS under a high electric field. It was found that in the h-BNNS with a thickness of 90 nm biased at 3.33×109 V/m, the quantum yield can reach to 86.8%, and the power conversion efficiency of 1.68%. To achieve the same quantum yield and power conversion efficiency for the ACTEL based on h-BN single crystal, the active phosphor layer should be 2 μm thick when biased at 1.5×108 V/m.
Similar content being viewed by others
References
K. Watanabe, T. Taniguchi, and H. Kanda, Nat. Mater. 3 (6), 404–409 (2004).
S. Larach and R.E. Shrader, Phys. Rev. 104, 68 (1956) and references therein (b) L. Simon and R.E. Shrader, U.S. Patent No. US2921218A (12 Jan, 1960).
Y. Kubota, K. Watanabe, O. Tsuda, and T. Taniguchi, Science 317 (5840), 932–934 (2007).
T. Taniguchi, Rev. High-Pressure Sci. and Technol. 29 (2), 121–128 (2019).
S. H. Lee, H. Jeong, D. Y. Kim, S. Y. Seo, C. Han, O. F. N. Okello, J. I. Lo, Y. C. Peng, C. H. Oh, G. W. Lee, J. I. Shim, B. M. Cheng, K. Song, S. Y. Choi, M. H. Jo, and J. K. Kim, Opt. Express 27, 19692 (2019)
T.C. Doan, J. Li, J.Y. Lin, and H.X. Jiang, AIP Adv 4 (10), 107126 (2014).
H.X. Jiang and J.Y. Lin, Semicond. Sci. Technol. 29 (8), 084003 (2014).
D. Li, K. Jiang, X. Sun, and C. Guo, Adv. Opt. Photonics 10 (1), 43 (2018).
H. Hirayama, in: Light-Emitting Diode- An Outlook on the Empirical Features and It Recent Technological Advancements, edited by J. Thirumalai (IntechOpen, London, 2018), pp127–158.
Y. Chen, H. Wu, E. Han, G. Yue, Z. Chen, Z. Wu, G. Wang, and H. Jiang, Appl. Phys. Lett. 106 (16), 162102 (2015).
T. Wunderer, J. E. Northrup, and N. M. Johnson, in: III-Nitride Ultraviolet Emitters Springer Series in Materials Science, edited by M. Kneissl and J. Rass (Springer, Cham, 2015), pp. 193–217.
D.R. Vij, The Handbook of Electroluminescent Materials (IoP, Institut of Physics, Bristol UK, 2004).
E. Bringuier, J. Appl. Phys. 70 (8), 4505–4512 (1991).
K.A. Mengle and E. Kioupakis, APL Mater 7 (2), 021106 (2019).
E. Bringuier, Phys. Rev. B. 49, 7974 (1994).
A.V. Hippel and R. S. Alger, Physical Review 76, 127 (1949).
H. Fröhlich, Royal Soc. A 160 (901), 230 (1937).
T. E. Wickramasinghe, M.S. thesis, Ohi University, 2019. Retrieved from https://etd.ohiolink.edu/pg_10?::NO:10:P10_ETD_SUBID:181684
P. Zalm, Philips Res. Rep. 11(5), 353–399 (1956). (b) P. Zalm, Philips Res. Rep 11(6), 417-451 (1956).
O. Kurakevych and V. Solozhenko, Molecules 21 (10), 1399 (2016).
P. Feng, M. Sajjad, E.Y. Li, H. Zhang, J. Chu, A. Aldalbahi, and G. Morell, Beilstein J. Nanotechnol. 5, 1186–1192 (2014).
M. Sajjad, W.M. Jadwisienczak, and P. Feng, Nanoscale 6 (9), 4577–4582 (2014).
R. Kosydar, W. Mroz, M. Jelinek, and T. Kocourek, in: Functional Properties of Nanostructured Materials NATO Science Series II: Mathematics, Physics and Chemistry, edited by R. Kassing, P. Petkov, W. Kulisch, and C. Popov (Springer, Dordrecht, 2006), pp. 295–298.
R. Bourrellier, M. Amato, L.H.G. Tizei, C. Giorgetti, A. Gloter, M.I. Heggie, K. March, O. Stéphan, L. Reining, M. Kociak, and A. Zobelli, ACS Photonics 1 (9), 857–862 (2014).
R.M. Ribeiro and N.M.R. Peres, Phys. Rev. B 83, 235312 (2011).
G. Cassabois, P. Valvin, and B. Gil, Phys. Rev. B 93, 1 (2016).
S. Kasap, C. Koughia, and H.E. Ruda, Springer Handbook of Electronic and Photoni Materials (Springer Cham, 2017), pp. 30, 31, 32.
B.K. Ridley, J. Phys. C Solid State Phys. 16 (17), 3373–3388 (1983).
Y. Hattori, T. Taniguchi, K. Watanabe, and K. Nagashio, Phys. Rev. B 97, 045425 (2018).
G. Neumark, Phys. Rev. 116 (6), 1425 (1959).
G.H. Lee, Y.J. Yu, C. Lee, C. Dean, K.L. Shepard, P. Kim, and J. Hone, Appl. Phys. Lett. 99 (24), 243114 (2011).
D. Liljequist, Radiat. Phys. Chem. 81, 1703 (2012)
J. Kotakoski, C.H. Jin, O. Lehtinen, K. Suenaga, and A. V. Krasheninnikov, Phys. Rev. B 82 (11), 113404 (2010).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Yuan, W., Wickramasinghe, T.E. & Jadwisienczak, W.M. Design of Novel Deep Ultra-Violet ac-Driven Electroluminescence Devices Based on Boron Nitride nano-Materials. MRS Advances 5, 421–430 (2020). https://doi.org/10.1557/adv.2020.134
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2020.134