Abstract
The degradation of organic molecules in an aqueous medium using heterogeneous photocatalysis depends on the chemical composition and concentration of the organic compound, the crystalline and morphological nature of the photocatalyst, the pH of the dye dilution, and the reaction temperature. Since photocatalytic degradation is a process that occurs on the surface of the catalytic material, it is desirable to induce maximum adsorption of the organic compound. One strategy to achieve this is to functionalize the surface of the catalyst to retain the molecule of interest. In this work, we studied the interaction of acid orange 7 (AO7) with commercial TiO2-anatase powder catalyst, and with a catalyst synthesized in house using titanium tetrachloride and ethanolamine (TiO2-et). Our results indicate that there is no adsorption of the AO7 dye on the TiO2-et particles. The infrared spectrum of the TiO2-et particles is presented.
Similar content being viewed by others
References
J.C. Yu, W. Ho, J. Lin, H. Yip and P.K. Wong Environ. Sci. Technol, 37(10), 2296 (2003).
S. Kayano, K. Yoshihiko, H. Kazuhito and F. Akira, Environ. Sci. Technol, 33(5), 726 (1998).
M.R. Hoffmann, S.T. Martin, W. Choi and W. Bahnemann Chem. Rev., 95, 69 (1995).
A.O. Ibhadon, P. Fitzpatrick Catalysis, 3, 189 (2013).
A. Makowski, W. Wardas Current Topics in Biophysics, 25(1), 19 (2001).
M. Abdennouri et al. Journal of Saudi Chemical Society, 19, 485 (2015).
L. Lhomme, S. Brosillon, D. Wolbert Chemosphere, 70(3), 381 (2008).
Fosso-E. Kankeu, F. Waanders, M. Heldenhuys 7th International Conference on Latest in Engineering and Technology, ISBN 978-93-84422-58-2, (2015).
B.R. Eggins, F.L. Palmer, J.A. Byrne Water Research, 31(5), 1223 (1997).
J.C. Colmenares ed. and Y. Xu Springer, 1st ed., (2016).
M. Tasbihi et al. Journal of Photochemistry and Photobiology A: Chemistry, 366, 72 (2018).
H. Einaga, T. Ibusuki, S. Futamura Environ. Sci. Technol., 38, 285 (2004).
M. Bowker, Sharpe R. Catalysis, Structure & Reactivity., 3(1), 140 (2015).
L.C. Chen and C.M. Huang Journal of Molecular Catalysis A: Chemical, 265(1-2), 133 (2007).
S. Klosek and D. Raftery J. Phys. Chem. B, 105(14), 2815 (2001).
Q. Wang et al. Journal of Nanoparticle Research, 19(2), 72 (2017).
N. Serpone J. Phys. Chem. B, 110(48), 24287 (2006).
D. Zhang Acta Chimica Slovaca, 6(1), 141 (2013).
D. Kanakaraju, S. Ravichandar, Y.C. Lim Journal of Environmental Sciences, 55, 214 (2017).
F. Riboni, L.G. Bettini, D.W. Bahnemann and E. Selli Catalysis Today, 209, 28 (2013).
T. Torimoto, S. Ito, S. Kuwabata and H. Yoneyama Environ. Sci. Technol., 30(4), 1275 (1996).
H.B. Hadjltaief, M.E. Galvez, M.B. Zina and Da P. Costa Arabian Journal of Chemistry, 1, (2014).
P. Bénézeth, D.J. Wesolowski J. Solution Chem, 38, 925 (2009).
S.V. Mattigod et al. Environ. Sci. Technol., 39, 7306 (2005).
K. Bourikas, M. Stylidi, D.I. Kondarides and X.E. Verykios Langmuir, 21, 9222 (2005).
J. Lützenkirchen et al. Croat. Chem., 85(4), 391 (2012).
T. Kotsokechagia, F. Cellesi, A. Thomas, M. Niederberger and N. Tirelli Langmuir, 24, 6988 (2008).
U. Schubert Acc. Chem. Res., 40, 730 (2007).
M.J. Velasco, F. Rubio, J. Rubio, J.L. Oteo Spectroscopy Letters, 32(2), 289 (1999).
P. Praveen, G. Viruthagiri, S. Mugundan, N. Shanmugam, Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 117, 622 (2014).
E. Iravani, S.A. Allahyari, Z. Shojaei, T. Mostaedi, J. Braz. Chem. Soc., 26(8), 1608 (2015).
Y.H. Chiu, T.F.M. Chang, C.Y. Chen, M. Sone, Y.J. Hsu Catalysts, 9(5), 430 (2019).
M. Stylidi, D.I. Kondarides, X.E. Verykios Applied Catalysis B. Environmental, 47, 189 (2004)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Arteaga-Jiménez, A., Caudana-Campos, A.I., García-García, A.L. et al. Adsorption mechanism of acid orange 7 on photocatalytic materials based on TiO2. MRS Advances 4, 3399–3405 (2019). https://doi.org/10.1557/adv.2019.481
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2019.481