Skip to main content
Log in

Artificial Synaptic Behavior of Aloe Polysaccharides-Based Device with Au as Top Electrode

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Formulated, processed, and dried Aloe polysaccharides thin film sandwiched between ITO as bottom electrode and Au as top electrode has been adopted as an artificial synapse to emulate behavior of neuromorphic computing. The synaptic plasticity or weight has been modulated with this simple metal-insulator-metal structure by applying voltage sweep and voltage pulse, with excitatory postsynaptic current being monitored. Synaptic potentiation and depression has been demonstrated by applying 6 consecutive sweeps of voltage in positive and negative polarity, respectively. By varying number (10–50) of voltage pulses, variable synaptic weight has been measured with paired pulse facilitation and post-tetanic potentiation indexes of 2.61x10-6 and 1.45x10-4, respectively. The short-term plasticity and long-term potentiation can be clearly revealed when applying 40 pulses and beyond, with extracted time constants of approximately 28 s at 40 pulses and 90 s at 50 pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. V. Wang, L. Wang, Enter. Inform. Systs, 11 (7), 952 (2017).

    Article  Google Scholar 

  2. M. Maksimovic, in Internet of Things and Big Data Analytics Toward Next-Generation Intelligence, edited by Dey N., Hassanien A. E., Bhatt C., Ashour A. S., and Satapathy S. C., (Springer International Publishing, Cham, 2018), p. 283.

  3. M. Irimia-Vladu, Chem Soc Rev, 43 (2), 588 (2014).

    Article  CAS  Google Scholar 

  4. B. H. Robinson, Scien. of The Tot. Environ., 408 (2), 183 (2009).

    Article  CAS  Google Scholar 

  5. D. N. Perkins, M.-N. Brune Drisse, T. Nxele, and P. D. Sly, Scien. of The Tot. Environ., 80 (4), 286 (2014).

    Google Scholar 

  6. S. Sthiannopkao, M. H. Wong, Scien. of The Tot. Environ., 464-464, 1147 (2013).

    Article  Google Scholar 

  7. M. L. Schneider, C. A. Donnelly, S. E. Russek, B. Baek, M. R. Pufall, P. F. Hopkins, et al., Scien. Advan., 4 (1), 1 (2018).

    Google Scholar 

  8. Y. van de Burgt, E. Lubberman, E. J. Fuller, S. T. Keene, G. C. Faria, S. Agarwal, et al., Natu. Mater., 16, 414 (2017).

    Article  Google Scholar 

  9. R. Wood, I. Bruce, C. B. Moon, W. Y. Kim, and P. Mascher, Orga. Electron, 13, 3254 (2012).

    Article  CAS  Google Scholar 

  10. S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, Nano Lett., 10, 1297 (2010).

    Article  CAS  Google Scholar 

  11. Y. Park and J.-S. Lee, ACS Nano, 11 (9), 8962, (2017).

    Article  CAS  Google Scholar 

  12. M.-K. Kim and J.-S. Lee, ACS Nano, 12 (2), 1680 (2018).

    Article  CAS  Google Scholar 

  13. F. Yu, L. Q. Zhu, W. T. Gao, Y. M. Fu, H. Xiao, J. Tao, et al., ACS Appl. Mater. Interfaces, 10 (19), 16881–16886 (2018).

    Article  CAS  Google Scholar 

  14. G. Wu, P. Feng, X. Wan, L. Zhu, Y. Shi, and Q. Wan, Scient. Rep., 6, 23578 (2016).

    Article  CAS  Google Scholar 

  15. N. Raeis-Hosseini, Y. Park, and J.-S. Lee, Adv. Funct. Mater., 28 (31), 1800553 (2018).

    Article  Google Scholar 

  16. Z. X. Lim and K. Y. Cheong, J. Phys.: Conf. Ser., 1082, 12056, (2018).

    Google Scholar 

  17. Z. X. Lim, S. Sreenivasan, Y. H. Wong, F. Zhao, and K. Y. Cheong, MRS Advances, 1 (36), 2513–2518 (2016).

    Article  CAS  Google Scholar 

  18. W. F. Lim, H. J. Quah, S. Sreenivasan, and K. Y. Cheong, Mater. Tech.: Adv. Perform. Mater, 30 (A1), A29–A35 (2015).

    Article  CAS  Google Scholar 

  19. Z. X. Lim and K. Y. Cheong, Adv. Mater. Technol., 3 (5), 1800007 (2018).

    Article  Google Scholar 

  20. B.-H. Lee, H. Bae, H. Seong, D.-L. Lee, H. Park, Y.J. Choi, S.-G. Im, S.O. Kim, and Y.-K. Choi, ACS Nano, 9 (7), 7306–7313 (2015).

    Article  CAS  Google Scholar 

  21. P.A. Reissner, Y. Fedoryshyn, J.-N. Tisseranta, and A. Stemmer, Phys. Chem. Chem. Phys., 18 (33), 22783–22788 (2016).

    Article  CAS  Google Scholar 

  22. Z. X. Lim and K. Y. Cheong, Phys. Chem. Chem. Phys., 17 (40), 26833–26853 (2015).

    Article  CAS  Google Scholar 

  23. Z. X. Lim, I.A. Tayeb, Z. A. A. Hamid, M. F. Ain, A. M. Hashim, J. M. Abdullah, F. Zhao, and K. Y. Cheong, IEEE Trans. Electron Dev., 66 (7), 3110 (2019).

    Article  CAS  Google Scholar 

  24. L. Zhou, J.-Y. Mao, Y. Ren, J.-Q. Yang, S.-R. Zhang, Y. Zhou, et al., Small, 14 (28), 1800288 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, Z.X., Tayeb, I.A., Hamid, Z.A.A. et al. Artificial Synaptic Behavior of Aloe Polysaccharides-Based Device with Au as Top Electrode. MRS Advances 5, 693–698 (2020). https://doi.org/10.1557/adv.2019.461

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.461

Navigation