Skip to main content
Log in

Relation between Surface Area and Surface Potential Change during (co)Polyesters Degradation as Langmuir Monolayer

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Polyhydroxyalkanoates (PHAs) are degradable (co)polyesters synthesized by microorganisms with a variety of side-chains and co-monomer ratios. PHAs can be efficiently hydrolyzed under alkaline conditions and by PHA depolymerase enzymes, altering their physicochemical properties. Using 2D Langmuir monolayers as model system to study the degradation behavior of macromolecules, we aim to describe the the interdependency between the degradation of two PHAs and the surface potential, which influences material-proteins interaction and cell response. We hypothesize that the mechanism of hydrolysis of the labile ester bonds in (co)polyesters defines the evolution of the surface potential, owing to the rate of accumulation of charged insoluble degradation products. The alkaline hydrolysis and the enzymatically catalyzed hydrolysis of PHAs were previously defined as chain-end scission and random-scission mechanisms, respectively. In this study, these two distinct scenarios are used to validate our model. The surface potential change during the chain-end scission of poly(3-R-hydroxybutyrate) (PHB) under alkaline conditions was compared to that of the enzymatically catalyzed hydrolysis (random-scission) of poly[(3-R-hydroxyoctanoate)-co-(3-R-hydroxyhexanoate)] (PHOHHx), using the Langmuir monolayer technique. In the random-scission mechanism the dissolution of degradation products, measured as a decrease in the area per molecule, was preceded by a substantial change of the surface potential, provoked by the negative charge of the broken ester bonds accumulated in the air-water interface. In contrast, when chains degraded via the chain-ends, the surface potential changed in line with the dissolution of the material, presenting a kinetic dependent on the surface area of the monolayers. These results provide a basis for understanding PHAs degradation mechanism. Future research on (co)polymers with different main-chain lengths might extend the elucidation of the surface potential development of (co)polyesters as Langmuir monolayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Metwally and U. Stachewicz, Mater. Sci. Eng. C 104, 109883 (2019).

    Article  CAS  Google Scholar 

  2. O. Nedela, P. Slepicka and V. Svorcik, Materials (Basel) 10 (10), 1115 (2017).

    Article  Google Scholar 

  3. E. Sambha’a, A. Lallam and A. Jada, J. Polym. Environ. 18 (4), 532–538 (2010).

    Article  Google Scholar 

  4. T. Ivanova, A. Svendsen, R. Verger and I. Panaiotov, Colloid Polym. Sci. 278 (8), 719–727 (2000).

    Article  CAS  Google Scholar 

  5. N. Grozev, A. Svendsen, R. Verger and I. Panaiotov, Colloid Polym. Sci. 280 (1), 7–17 (2002).

    Article  CAS  Google Scholar 

  6. T. Ivanova, A. Malzert, F. Boury, J. E. Proust, R. Verger and I. Panaiotov, Colloids Surf., B 32 (4), 307–320 (2003).

    Article  CAS  Google Scholar 

  7. K. Balashev, T. Ivanova, K. Mircheva and I. Panaiotov, J. Colloid Interface Sci. 360 (2), 654–661 (2011).

    Article  CAS  Google Scholar 

  8. R. Machatschek, B. Schulz and A. Lendlein, Macromol. Rapid Commun. 40 (1), 1800611 (2019).

    Article  Google Scholar 

  9. R. Machatschek, B. Schulz and A. Lendlein, MRS Adv. 3 (63), 3883–3889 (2018).

    Article  CAS  Google Scholar 

  10. M. Koller, Molecules 23 (2), 362 (2018).

    Article  Google Scholar 

  11. F. Fan, L. Wang, Z. Ouyang, Y. Wen and X. Lu, Appl. Microbiol. Biotechnol. 102 (7), 3229–3241 (2018).

    Article  CAS  Google Scholar 

  12. N. A. Tarazona, R. Machatschek and A. Lendlein (submitted).

  13. M. Scandola, M. Pizzoli, G. Ceccorulli, A. Cesaro, S. Paolletti and L. Navarini, Int. J. Biol. Macromol. 10 (6), 373–377 (1988).

    Article  CAS  Google Scholar 

  14. L. J. R. Foster and B. J. Tighe, Polym. Degrad. Stab. 87 (1), 1–10 (2005).

    Article  CAS  Google Scholar 

  15. J. Yu, D. Plackett and L. X. L. Chen, Polym. Degrad. Stab. 89 (2), 289–299 (2005).

    Article  CAS  Google Scholar 

  16. V. Martinez, P. G. de Santos, J. Garcia-Hidalgo, D. Hormigo, M. A. Prieto, M. Arroyo and I. de la Mata, Appl. Microbiol. Biotechnol. 99 (22), 9605–9615 (2015).

    Article  CAS  Google Scholar 

  17. N. A. Tarazona, R. Machatschek, B. Schulz, M. A. Prieto and A. Lendlein, Biomacromolecules 20 (9), 3242–3252 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Lendlein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarazona, N.A., Machatschek, R. & Lendlein, A. Relation between Surface Area and Surface Potential Change during (co)Polyesters Degradation as Langmuir Monolayer. MRS Advances 5, 667–677 (2020). https://doi.org/10.1557/adv.2019.458

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.458

Navigation