Skip to main content
Log in

Skyrmions in anisotropic magnetic fields: strain and defect driven dynamics

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Magnetic skyrmions are particle-like, topologically protected magnetization entities that are promising candidates for information carriers in racetrack-memory schemes. The transport of skyrmions in a shift-register-like fashion is crucial for their embodiment in practical devices. Recently, we demonstrated experimentally that chiral skyrmions in Cu2OSeO3 can be effectively manipulated by a magnetic field gradient, leading to a collective rotation of the skyrmion lattice with well-defined dynamics in a radial field gradient. Here, we employ a skyrmion particle model to numerically study the effects of resultant shear forces on the structure of the skyrmion lattice. We demonstrate that anisotropic peak broadening in experimentally observed diffraction patterns can be attributed to extended linear regions in the magnetic field profile. We show that topological (5–7) defects emerge to protect the six-fold symmetry of the lattice under the application of local shear forces, further enhancing the stability of proposed magnetic field driven devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Nagaosa and Y. Tokura, Nat. Nanotechnol. 8, 899–911 (2013).

    Article  CAS  Google Scholar 

  2. S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, Science 323, 915–919 (2009).

    Article  Google Scholar 

  3. X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Nature 465, 901–904 (2010).

    Article  CAS  Google Scholar 

  4. X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang, S. Ishiwata, Y. Matsui, and Y. Tokura, Nat. Mater. 10, 106–109 (2011).

    Article  CAS  Google Scholar 

  5. S. Seki, X. Z. Yu, S. Ishiwata, and Y. Tokura, Science 336, 198–201 (2012).

    Article  CAS  Google Scholar 

  6. Y. Tokunaga, X. Z. Yu, J. S. White, H. M. Rennow, D. Morikawa, Y. Taguchi, and Y. Tokura, Nat. Commun. 6, 7638 (2015).

    Article  CAS  Google Scholar 

  7. F. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Neubauer, W. Munzer, A. Bauer, T. Adams, R. Georgii, P. Böni, R. A. Duine, K. Everschor, M. Garst, and A. Rosch, Science 330, 1648–1651 (2010).

    Article  CAS  Google Scholar 

  8. K. Everschor, M. Garst, B. Binz, F. Jonietz, S. Mühlbauer, C. Pfleiderer, and A. Rosch, Phys. Rev. B 86, 054432 (2012).

    Article  Google Scholar 

  9. X. Z. Yu, N. Kanazawa, W. Z. Zhang, T. Nagai, T. Hara, K. Kimoto, Y. Matsui, Y. Onose, and Y. Tokura, Nat. Commun. 3, 988 (2012).

    Article  CAS  Google Scholar 

  10. J. Iwasaki, M. Mochizuki, and N. Nagaosa, Nat. Commun. 4, 1463 (2013).

    Article  Google Scholar 

  11. S. Woo, K. Litzius, B. Krüger, M.-Y. Im, L. Caretta, K. Richter, M. Mann, A. Krone, R. M. Reeve, M. Weigand, P. Agrawal, I. Lemesh, M.-A. Mawass, P. Fischer, M. Kläui, and G. S. D. Beach, Nat. Mater. 15, 501–506 (2016).

    Article  CAS  Google Scholar 

  12. J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nat. Nanotechnol. 8, 839–844 (2013).

    Article  CAS  Google Scholar 

  13. S. L. Zhang W. W. Wang, D. M. Burn, H. Peng, H. Berger, A. Bauer, C. Pfleiderer, G. van der Laan, and T. Hesjedal, Nat. Commun. 9, 2115 (2018).

    Article  CAS  Google Scholar 

  14. A. A. Thiele, Phys. Rev. Lett. 30, 230–233 (1973).

    Article  Google Scholar 

  15. C. Reichhardt, D. Ray, and C. O. Reichhardt, Phys. Rev. Lett. 114, 217202 (2015).

    Article  CAS  Google Scholar 

  16. M. W. Olszewski, M. R. Eskildsen, C. Reichhardt, and C. O. Reichhardt, New J. Phys. 20, 023005 (2018).

    Article  Google Scholar 

  17. S. Z. Lin, C. Reichhardt, C. D. Batista, and A. Saxena, Phys. Rev. B 87, 214419 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brearton, R., Olszewski, M.W., Zhang, S. et al. Skyrmions in anisotropic magnetic fields: strain and defect driven dynamics. MRS Advances 4, 643–650 (2019). https://doi.org/10.1557/adv.2019.43

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.43

Navigation