Skip to main content
Log in

Investigation of the Screen-printable Ag/Cu Contact for Si Solar Cells Using Microstructural, Optical and Electrical Analyses

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

In a bid to further reduce the cost of the front Ag contact metallization in Si solar cells, Cu is the potential alternative to replace the Ag in the Ag paste. However, this requires an understanding of the contact mechanism of screen-printable Ag/Cu paste in Si solar cell through rapid thermal process. The pastes with different weight percent of Cu (0 wt%, 25 wt% and 50 wt%) were used and the Voc of the cells was reduced with the increasing weight percent of Cu. This is because the presence of Cu in the paste changed the microstructure of the Ag/Cu/Si contact through Cu doping of the glass frits and hence increasing the Tg of the glass. The increased Tg of the glass impeded the uniform spreading of the molten glass and resulted in poor wetting and etching of the SiNx, which impacted the contact as evident in ideality factor of less than unity. This also led to the formation of agglomerated Ag crystallites with features of 700 nm in length and 200 nm in depth, which is close to the p-n junction, of which depth is ~300 nm. However, the interface glass layer acted as an effective diffusion barrier layer to prevent Cu atoms from diffusing into the Si emitter, which is quite remarkable for Cu not to diffuse into silicon at high temperature. Further investigation of the Ag/Cu contacts with the conductive AFM in conjunction with the SEM and STEM analyses revealed that the growth of Ag crystallites in the Si emitter is responsible for carrier conduction the gridlines as with the pure Ag paste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Lee, D. W. Lee and S. H. Lee, Korean J. Met. Mater. 55 (9), 637–644 (2017).

    CAS  Google Scholar 

  2. Historical Copper Spot Price Chart, Available at: https://www.providentmetals.com/spot-price/chart/copper/ (accessed 20 September 2019).

  3. Historical Silver Spot Price Chart, Available at: https://www.providentmetals.com/spot-price/chart/silver/ (accessed 20 September 2019).

  4. A. A. Istratov and E. R. Weber, J. Electrochem. Soc. 149 (1), G21–G30 (2002).

    Article  CAS  Google Scholar 

  5. C. Modanese, M. Wagner, F. Wolny, A. Oehlke, H. Laine, A. Inglese, H. Vahlman, M. Yli-Koski and H. Savin, Sol. Energy Mater. Sol. Cells 186, 373–377 (2018).

    Article  CAS  Google Scholar 

  6. S. Adachi, T. Kato, T. Aoyagi, T. Naito, H. Yamamoto, T. Nojiri, Y. Kurata, Y. Kurihara and M. Yoshida, IEEE J. Photovolt. 3 (4), 1178–1183 (2013).

    Article  Google Scholar 

  7. P. Vitanov, N. Tyutyundzhiev, P. Stefchev and B. Karamfilov, Sol. Energy Mater. Sol. Cells 44 (4), 471–484 (1996).

    Article  CAS  Google Scholar 

  8. E.-J. Lee, D. Kim and S. Lee, Sol. Energy Mater. Sol. Cells 74 (1-4), 65–70 (2002).

    Article  CAS  Google Scholar 

  9. J. Kang, J. You, C. Kang, J. J. Pak and D. Kim, Sol. Energy Mater. Sol. Cells 74 (1-4), 91–96 (2002).

    Article  CAS  Google Scholar 

  10. J. You, J. Kang, D. Kim, J. J. Pak and C. S. Kang, Sol. Energy Mater. Sol. Cells 79 (3), 339–345 (2003).

    Article  CAS  Google Scholar 

  11. G. Dapei, G. Papadimitropoulos, D. Varvitsiotis, G. Koustas, M. Vasilopoulou and D. Davazoglou, Phys. Status Solidi (a) 212 (12), 2816–2821 (2015).

    Article  CAS  Google Scholar 

  12. M. A. Green, Prog Photovolt 19 (8), 911–916 (2011).

    Article  CAS  Google Scholar 

  13. A. Skwarek, K. Drabczyk and R. P. Socha, Circuit World (2015).

    Google Scholar 

  14. D. Wood, I. Kuzma-Filipek, R. Russell, F. Duerinckx, N. Powell, A. Zambova, B. Chislea, P. Chevalier, C. Boulord and A. Beucher, Energy Procedia 55, 724–732 (2014).

    Article  CAS  Google Scholar 

  15. K. Ren, T. Ye, Y. Zhang and A. Ebong, MRS Adv. 4 (5-6), 311–318 (2019).

    Article  CAS  Google Scholar 

  16. P. Subramanian and J. Perepezko, J Phase Equilibria Diffus 14 (1), 62–75 (1993).

    Article  CAS  Google Scholar 

  17. E. A. Neel, I. Ahmed, J. Pratten, S. Nazhat and J. Knowles, Biomaterials 26 (15), 2247–2254 (2005).

    Article  Google Scholar 

  18. G. Duan, D. Xu and W. L. Johnson, Metall Mater Trans A 36 (2), 455–458 (2005).

    Article  Google Scholar 

  19. X.-X. Pi, X.-H. Cao, Z.-X. Fu, L. Zhang, P.-D. Han, L.-X. Wang and Q.-T. Zhang, Acta Metallurgica Sinica (English Letters) 28 (2), 223–229 (2015).

    Article  CAS  Google Scholar 

  20. J. Qin, W. Zhang, S. Bai and Z. Liu, Sol. Energy Mater. Sol. Cells 144, 256–263 (2016).

    Article  CAS  Google Scholar 

  21. G. Zheng, Y. Tai, H. Wang and J. Bai, J. Mater. Sci.: Mater. Electron. 25 (9), 3779–3786 (2014).

    CAS  Google Scholar 

  22. F. Ming, C. Si-Guo, W. Yue, Z. Hong and F. Lin, J Inorg Mater. 31 (8), 785–790 (2016).

    Article  Google Scholar 

  23. F. Gonella, F. Caccavale, L. Bogomolova, F. d’Acapito and A. Quaranta, J. Appl. Phys. 83 (3), 1200–1206 (1998).

    Article  CAS  Google Scholar 

  24. V. Shanmugam, A. Khanna, P. K. Basu, A. G. Aberle, T. Mueller and J. Wong, Sol. Energy Mater. Sol. Cells 147, 171–176 (2016).

    Article  CAS  Google Scholar 

  25. S. Adachi, T. Nojiri, T. Kato, S. Watanabe and M. Yoshida, J. Alloys Compd. 757, 333–339 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, K., Ebong, A. Investigation of the Screen-printable Ag/Cu Contact for Si Solar Cells Using Microstructural, Optical and Electrical Analyses. MRS Advances 5, 431–439 (2020). https://doi.org/10.1557/adv.2019.438

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.438

Navigation