Abstract
In a bid to further reduce the cost of the front Ag contact metallization in Si solar cells, Cu is the potential alternative to replace the Ag in the Ag paste. However, this requires an understanding of the contact mechanism of screen-printable Ag/Cu paste in Si solar cell through rapid thermal process. The pastes with different weight percent of Cu (0 wt%, 25 wt% and 50 wt%) were used and the Voc of the cells was reduced with the increasing weight percent of Cu. This is because the presence of Cu in the paste changed the microstructure of the Ag/Cu/Si contact through Cu doping of the glass frits and hence increasing the Tg of the glass. The increased Tg of the glass impeded the uniform spreading of the molten glass and resulted in poor wetting and etching of the SiNx, which impacted the contact as evident in ideality factor of less than unity. This also led to the formation of agglomerated Ag crystallites with features of 700 nm in length and 200 nm in depth, which is close to the p-n junction, of which depth is ~300 nm. However, the interface glass layer acted as an effective diffusion barrier layer to prevent Cu atoms from diffusing into the Si emitter, which is quite remarkable for Cu not to diffuse into silicon at high temperature. Further investigation of the Ag/Cu contacts with the conductive AFM in conjunction with the SEM and STEM analyses revealed that the growth of Ag crystallites in the Si emitter is responsible for carrier conduction the gridlines as with the pure Ag paste.
Similar content being viewed by others
References
S. H. Lee, D. W. Lee and S. H. Lee, Korean J. Met. Mater. 55 (9), 637–644 (2017).
Historical Copper Spot Price Chart, Available at: https://www.providentmetals.com/spot-price/chart/copper/ (accessed 20 September 2019).
Historical Silver Spot Price Chart, Available at: https://www.providentmetals.com/spot-price/chart/silver/ (accessed 20 September 2019).
A. A. Istratov and E. R. Weber, J. Electrochem. Soc. 149 (1), G21–G30 (2002).
C. Modanese, M. Wagner, F. Wolny, A. Oehlke, H. Laine, A. Inglese, H. Vahlman, M. Yli-Koski and H. Savin, Sol. Energy Mater. Sol. Cells 186, 373–377 (2018).
S. Adachi, T. Kato, T. Aoyagi, T. Naito, H. Yamamoto, T. Nojiri, Y. Kurata, Y. Kurihara and M. Yoshida, IEEE J. Photovolt. 3 (4), 1178–1183 (2013).
P. Vitanov, N. Tyutyundzhiev, P. Stefchev and B. Karamfilov, Sol. Energy Mater. Sol. Cells 44 (4), 471–484 (1996).
E.-J. Lee, D. Kim and S. Lee, Sol. Energy Mater. Sol. Cells 74 (1-4), 65–70 (2002).
J. Kang, J. You, C. Kang, J. J. Pak and D. Kim, Sol. Energy Mater. Sol. Cells 74 (1-4), 91–96 (2002).
J. You, J. Kang, D. Kim, J. J. Pak and C. S. Kang, Sol. Energy Mater. Sol. Cells 79 (3), 339–345 (2003).
G. Dapei, G. Papadimitropoulos, D. Varvitsiotis, G. Koustas, M. Vasilopoulou and D. Davazoglou, Phys. Status Solidi (a) 212 (12), 2816–2821 (2015).
M. A. Green, Prog Photovolt 19 (8), 911–916 (2011).
A. Skwarek, K. Drabczyk and R. P. Socha, Circuit World (2015).
D. Wood, I. Kuzma-Filipek, R. Russell, F. Duerinckx, N. Powell, A. Zambova, B. Chislea, P. Chevalier, C. Boulord and A. Beucher, Energy Procedia 55, 724–732 (2014).
K. Ren, T. Ye, Y. Zhang and A. Ebong, MRS Adv. 4 (5-6), 311–318 (2019).
P. Subramanian and J. Perepezko, J Phase Equilibria Diffus 14 (1), 62–75 (1993).
E. A. Neel, I. Ahmed, J. Pratten, S. Nazhat and J. Knowles, Biomaterials 26 (15), 2247–2254 (2005).
G. Duan, D. Xu and W. L. Johnson, Metall Mater Trans A 36 (2), 455–458 (2005).
X.-X. Pi, X.-H. Cao, Z.-X. Fu, L. Zhang, P.-D. Han, L.-X. Wang and Q.-T. Zhang, Acta Metallurgica Sinica (English Letters) 28 (2), 223–229 (2015).
J. Qin, W. Zhang, S. Bai and Z. Liu, Sol. Energy Mater. Sol. Cells 144, 256–263 (2016).
G. Zheng, Y. Tai, H. Wang and J. Bai, J. Mater. Sci.: Mater. Electron. 25 (9), 3779–3786 (2014).
F. Ming, C. Si-Guo, W. Yue, Z. Hong and F. Lin, J Inorg Mater. 31 (8), 785–790 (2016).
F. Gonella, F. Caccavale, L. Bogomolova, F. d’Acapito and A. Quaranta, J. Appl. Phys. 83 (3), 1200–1206 (1998).
V. Shanmugam, A. Khanna, P. K. Basu, A. G. Aberle, T. Mueller and J. Wong, Sol. Energy Mater. Sol. Cells 147, 171–176 (2016).
S. Adachi, T. Nojiri, T. Kato, S. Watanabe and M. Yoshida, J. Alloys Compd. 757, 333–339 (2018).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ren, K., Ebong, A. Investigation of the Screen-printable Ag/Cu Contact for Si Solar Cells Using Microstructural, Optical and Electrical Analyses. MRS Advances 5, 431–439 (2020). https://doi.org/10.1557/adv.2019.438
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2019.438