Skip to main content
Log in

Solvent-based Fabrication Method for Magnetic, Shape-Memory Nanocomposite Foams

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

This paper presents shape-memory foams that can be temporarily fixed in their compressed state and be expanded on demand. Highly porous, nanocomposite foams were prepared from a solution of polyeiherureihane with suspended nanoparticles (mean aggregate size 90 nm) which have an iron(III) oxide core with a silica shell. The polymer solution with suspended nanoparticles was cooled down to -20 °C in a two-stage process, which was followed by freeze-diying. The average pore size increases with decreasing concentration of nanoparticles from 158 μm to 230 jum while the foam porosity remained constant. After fixation of a temporaiy form of the nanocomposite foams, shape recovery can be triggered either by heat or by exposure to an alternating magnetic field. Compressed foams showed a recovery rate of up to 76 ± 4% in a thermochamber at 80 °C, and a slightly lower recovery rate of up to 65 ± 4% in a magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. H. Meng and G. Q. Li, Polymer 54 (9), 2199–2221 (2013).

    Article  CAS  Google Scholar 

  2. M. C. Serrano and G. A. Ameer, Macromolecular Bioscience 12 (9), 1156–1171 (2012).

    Article  CAS  Google Scholar 

  3. X. Wu, W. M. Huang, Y. Zhao, Z. Ding, C. Tang and J. Zhang, Polymers 5 (4), 1169–1202 (2013).

    Article  Google Scholar 

  4. V. A. Beloshenko, V. N. Varyukhin and Y. V. Voznyak, Russian Chemical Reviews 74 (3), 265–283 (2005).

    Article  CAS  Google Scholar 

  5. A. Lendlein and O. E. C. Gould, Nat Rev Mater 4 (2), 116–133 (2019).

    Article  Google Scholar 

  6. R. Mohr, K. Kratz, T. Weigel, M. Lucka-Gabor, M. Moneke and A. Lendlein, PNAS 103 (10), 3540–3545 (2006).

    Article  CAS  Google Scholar 

  7. A. Lendlein and R. Langer, Science 296 (5573), 1673–1676 (2002).

    Article  Google Scholar 

  8. M. Behl, M. Y. Razzaq and A. Lendlein, Adv. Mater. 22 (31), 3388–3410 (2010).

    Article  CAS  Google Scholar 

  9. T. Sauter, K. Lutzow, M. Schossig, H. Kosmella, T. Weigel, K. Kratz and A. Lendlein, Adv. Eng. Mater. 14 (9), 818–824 (2012).

    Article  CAS  Google Scholar 

  10. S.-Q. Wang, D. Kaneko, M. Okajima, K. Yasaki, S. Tateyama and T. Kaneko, Angew. Chem. Int. Ed. 52 (42), 11143–11148 (2013).

    Article  CAS  Google Scholar 

  11. H. Y. Jiang, S. Kelch and A. Lendlein, Adv. Mater. 18 (11), 1471–1475 (2006).

    Article  CAS  Google Scholar 

  12. D. Habault, H. Zhang and Y. Zhao, Chemical Society Reviews 42 (17), 7244–7256 (2013).

    Article  CAS  Google Scholar 

  13. M. Y. Razzaq, M. Behl and A. Lendlein, Adv. Funct. Mater. 22 (1), 184–191 (2012).

    Article  CAS  Google Scholar 

  14. X. J. Yu, S. B. Zhou, X. T. Zheng, T. Guo, Y. Xiao and B. T. Song, Nanotechnology 20 (23) (2009).

    Google Scholar 

  15. J. Thevenot, H. Oliveira, O. Sandre and S. Lecommandoux, Chemical Society Reviews 42 (17), 7099–7116 (2013).

    Article  CAS  Google Scholar 

  16. M. Y. Razzaq, M. Behl, K. Kratz and A. Lendlein, Adv. Mater. 25 (40), 5730–+ (2013).

    Article  CAS  Google Scholar 

  17. L. Wang, M. Y. Razzaq, T. Rudolph, M. Heuchel, U. Nochel, U. Mansfeld, Y. Jiang, O. E. C. Gould, M. Behl, K. Kratz and A. Lendlein, Mater Horiz 5 (5), 861–867 (2018).

    Article  CAS  Google Scholar 

  18. T. Weigel, R. Mohr and A. Lendlein, Smart Mater. Struct. 18 (2), 025011 (2009).

    Article  Google Scholar 

  19. K. Hearon, P. Singhal, J. Horn, W. Small, C. Olsovsky, K. C. Maitland, T. S. Wilson and D. J. Maitland, Polymer Reviews 53 (1), 41–75 (2013).

    Article  CAS  Google Scholar 

  20. A. Metcalfe, A. C. Desfaits, I. Salazkin, L. Yahia, W. M. Sokolowski and J. Raymond, Biomaterials 24 (9), 1681–1681 (2003).

    Article  CAS  Google Scholar 

  21. L. De Nardo, S. Bertoldi, A. Cigada, M. C. Tanzi, H. J. Haugen and S. Fare, JABFM 10 (2), 119–126 (2012).

    Article  Google Scholar 

  22. H. M. Kim, Z. M. Huang, J. S. Kim, J. R. Youn and Y. S. Song, Eur. Polym. J. 106, 188–195 (2018).

    Article  CAS  Google Scholar 

  23. J. Y. Wang, J. S. Luo, R. Kunkel, M. Saha, B. N. Bohnstedt, C. H. Lee and Y. T. Liu, Mater. Lett. 250, 38–41 (2019).

    Article  CAS  Google Scholar 

  24. J. Y. Wang, R. Kunkel, J. S. Luo, Y. H. Li, H. Liu, B. N. Bohnstedt, Y. T. Liu and C. H. Lee, Polymers 11 (4), 14 (2019).

    CAS  Google Scholar 

  25. S. M. Kang, S. J. Lee and B. K. Kim, Express Polym. Lett. 6 (1), 63–69 (2012).

    Article  CAS  Google Scholar 

  26. S. M. Kang, M. J. Kim, S. H. Kwon, H. Park, H. M. Jeong and B. K. Kim, J. Mater. Sci 27 (22), 2837–2843 (2012).

    CAS  Google Scholar 

  27. S. L. Simkevitz and H. E. Naguib, High Perform. Polym. 22 (2), 159–183 (2010).

    Article  CAS  Google Scholar 

  28. H. Kalita and N. Karak, JNN 14 (7), 5435–5442 (2014).

    Article  CAS  Google Scholar 

  29. R. Q. Xie, J. L. Hu, F. Ng, L. Tan, T. W. Qin, M. Q. Zhang and X. Guo, Ceram. Int. 43 (6), 4794–4802 (2017).

    Article  CAS  Google Scholar 

  30. K. Luetzow, F. Klein, T. Weigel, R. Apostel, A. Weiss and A. Lendlein, J. Biomech. 40, S80–S88 (2007).

    Article  Google Scholar 

  31. A. S. Rowlands, S. A. Lim, D. Martin and J. J. Cooper-White, Biomaterials 28 (12), 2109–2121 (2007).

    Article  CAS  Google Scholar 

  32. Y. H. Gong, Z. W. Ma, C. Y. Gao, W. Wang and J. C. Shen, J Appl Polym Sci 101 (5), 3336–3342 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Lendlein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luetzow, K., Weigel, T. & Lendlein, A. Solvent-based Fabrication Method for Magnetic, Shape-Memory Nanocomposite Foams. MRS Advances 5, 785–795 (2020). https://doi.org/10.1557/adv.2019.422

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.422

Navigation