Skip to main content
Log in

Effects of Long-Time Current Annealing to the Hysteresis in CVD Graphene on SiO2

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Graphene specimens produced by chemical vapor deposition usually show p-type characteristics and significant hysteresis in ambient conditions. Among many methods, current annealing appears to be a better way of cleaning the sample due to the possibility of in-situ annealing in the measurement setup. However, long-time current annealing could increase defects in the underlying substrate. Studying the hysteresis with different anneal currents in a graphene device is, therefore, a topic of interest. In this experimental work, we investigate electron/hole transport in a graphene sample in the form of a Hall bar device with a back gate, where the graphene was prepared using chemical vapor deposition on copper foils. We study the hysteresis before and after current annealing the sample by cooling down to a temperature of 35 Kfrom room temperature with a back-gate bias in a closed cycle refrigerator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Castro A.H. Neto, F. Guinea, N.M.R. Peres K.S. Novoselov, and A.K. Geiin Reviews of Modern Physics 81 (1), 109 (2009).

    Article  Google Scholar 

  2. J.-H. Chen C. Jang S. Xiao M. Ishigaini, and M.S. Fuhrer Nature Nanotechnology 3. 206 (2008).

    Article  CAS  Google Scholar 

  3. X. Du I. Skachko, A. Barker, and E.Y. Andrei Nature Nanotechnology 3, 491 (2008).

    Article  CAS  Google Scholar 

  4. X. Du I. Skachko, F. Duerr A. Luican and E.Y. Andrei Nature 462, 192 (2009).

    Article  CAS  Google Scholar 

  5. Y.M. Lin, C. Dimitrakopoulos K.A. Jenkins D.B. Farmer H.Y. Chiu, A. Grill, and P. Avouris Science 327 (5966). 662 (2010).

    Article  CAS  Google Scholar 

  6. U.K. Wijewardena S.E. Brown, and X.-Q. Wang The Journal of Physical Chemistry C 120 (39), 22739 (2016).

    Article  CAS  Google Scholar 

  7. R.R. Nair, P. Blake A.N. Grigorenko K.S. Novoselov, T.J. Booth T. Stauber N.M. Peres, and A.K. Geim Science 320 (5881), 1308 (2008).

    Article  CAS  Google Scholar 

  8. K.S. Novoselov A.K. Geim, S.V. Morozov D. Jiang Y. Zhang S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306 (5696). 666 (2004).

    Article  CAS  Google Scholar 

  9. X. Li, W. Cai J. Kim S. An, J. Nah D. Yang R. Pmer A. Velamakanni I. Jung E. Tutuc S.K. Banerjee L. Colombo, and R.S. Ruoff, Science 324 (5932), 1312 (2009).

    Article  CAS  Google Scholar 

  10. O.I. Sarajlic and R.G. Mam Chemistry of Materials 25 (9). 1643 (2013).

    Article  CAS  Google Scholar 

  11. X. Li, C.W. Magnuson A. Venugopal R.M. Trornp J.B. Hannon E.M. Vogel L. Colombo, and R.S. Ruoff, Journal of the American Chemical Society 133 (9). 2816 (2011).

    Article  CAS  Google Scholar 

  12. Nguyen H. Shon and T. Ando Journal of the Physical Society of Japan 67 (7). 2421 (1998).

    Article  CAS  Google Scholar 

  13. R.G. Mani Applied Physics Letters 108 (3), 033507 (2016).

    Article  Google Scholar 

  14. J. Martin N. Akerman, G. Ulbricht, T. Lohmann J.H. Smet, von K. Klitzing, and A. Yacoby Nature Physics 4. 144 (2007).

    Article  Google Scholar 

  15. M.I. Katsnelson and A.K. Geim Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engmeering Sciences 366 (1863), 195 (2008).

    Article  CAS  Google Scholar 

  16. H. Wang Y. Wu, C. Cong J. Shang, and T. Yu, ACS Nano 4 (12), 7221 (2010).

    Article  CAS  Google Scholar 

  17. A. Kozbial Z. Li J. Sun X. Gong F. Zhou, Y. Wang H. Xu H. Liu and L. Li Carbon 74.218(2014).

    Article  CAS  Google Scholar 

  18. Wehling T O., A.I. Lichtenstein, and M.I. Katsnelson Applied Physics Letters 93 (20), 202110(2008).

    Article  Google Scholar 

  19. X. Li Y. Zhu W. Cai M. Borvsiak B. Han D. Chen R.D. Piner L. Colombo, and R.S. Ruoff Nano Lett 9 (12). 4359 (2009).

    Article  CAS  Google Scholar 

  20. K. Yan, H. Peng Y. Zhou H. Li, and Z. Liu Nano Lett 11 (3), 1106 (2011).

    Article  CAS  Google Scholar 

  21. S. Bhaviripudi X. Jia, M.S. Dresselhaus and J. Kong Nano Lett 10 (10), 4128 (2010).

    Article  CAS  Google Scholar 

  22. T. Feng D. Xie, G. Li J. Xu H. Zhao, T. Ren and H. Zhu Carbon 78, 250 (2014).

    Article  CAS  Google Scholar 

  23. J.E. Furneaux and T.L. Reinecke Physical Review B 33 (10), 6897 (1986).

    Article  CAS  Google Scholar 

  24. J.S. Lee S. Ryu K. Yoo I.S. Choi W.S. Yun, and J. Kim The Journal of Physical Chemistry C 111 (34), 12504 (2007).

    Article  CAS  Google Scholar 

  25. P. Kumar and A. Kumar Applied Physics Letters 104 (8), 083517 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wijewardena, U.K., Nanayakkara, T., Samaraweera, R. et al. Effects of Long-Time Current Annealing to the Hysteresis in CVD Graphene on SiO2. MRS Advances 4, 3319–3326 (2019). https://doi.org/10.1557/adv.2019.366

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.366

Navigation