Skip to main content

Advertisement

Log in

Extremely tough cyclic peptide nanopolymers

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

We present a new class of bioinspired nanomaterials that are stabilized by a combination of covalent and hydrogen bonds. Prior work by others has shown that cyclic peptides can self-assemble to form supramolecular assemblies through backbone-backbone hydrogen bonding. To improve upon this molecular architecture, we develop a synthesis route to polymerize cyclic peptides and form a linear polymer chain that can transition between a rigid nanorod and an unfolded conformation. For a cyclic peptide polymer containing amine-terminated side chains on each ring, we demonstrate self-assembly can be triggered in aqueous solutions by varying the pH. We measure the elastic modulus of the rigid nanorods to be ca. 50 GPa, which is comparable to our molecular dynamics (MD) prediction (ca. 64 GPa). Our results highlight the uniqueness of our molecular architecture, namely their exemplary toughness (up to 3 GJ m−3), in comparison to other cyclic peptide-based assemblies. Finally, we demonstrate amphiphilic cyclic β-peptides are capable of inhibiting the growth of gram-negative and gram-positive bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. B.L. Smith, et al., Nature 399, 761–763 (1999).

    Article  CAS  Google Scholar 

  2. M. Guthold, et al., Cell Biochem. Biophys. 49, 165–181 (2007).

    Article  CAS  Google Scholar 

  3. F. Vollrath, D.P. Knight, Nature 410, 541–548 (2001).

    Article  CAS  Google Scholar 

  4. F. Gittes, B. Mickey, J. Nettleton, J. Howard, J. Cell Biol. 120, 923–934 (1993).

    Article  CAS  Google Scholar 

  5. M.J. Buehler, Proc. Natl. Acad. Sci. USA 103, 12285–12290 (2006).

    Article  CAS  Google Scholar 

  6. I. Agnarsson, M. Kuntner, T.A. Blackledge, PloS ONE 5, e11234 (2010).

    Article  Google Scholar 

  7. S. Keten, M.J. Buehler, J. R. Soc. Interface 7, 1709–1721 (2010).

    Article  CAS  Google Scholar 

  8. J.-P. Salvetat, et al., Phys. Rev. Lett. 82, 944–947 (1999).

    Article  CAS  Google Scholar 

  9. R.A. Dickie, T.L. Smith, J. Polym. Sci. A2, 687–707 (1969).

    Google Scholar 

  10. M.R. Ghadiri, J.R. Granja, R.A. Milligan, D.E. McRee, N. Khazanovich, Nature 366, 324–327 (1993).

    Article  CAS  Google Scholar 

  11. D.T. Bong, T.D. Clark, J.R. Granja, M.R. Ghadiri, Angew. Chem. Int. Ed. 40, 989–1011 (2001).

    Google Scholar 

  12. A. Rising, and J. Johansson, Nat. Chem. Biol. 11, 309–315(2015).

    Article  CAS  Google Scholar 

  13. K.P. Fears, M.K. Kolel-Veetil, D.E. Barlow, N. Bernstein, C.R. So, K.J. Wahl, X. Li, J.L. Kulp III, R. Latour, T.D. Clark, Nat. Commun. 9, 4090/1–8 (2018).

    Article  Google Scholar 

  14. J. Couet, J. Samuel, A. Kopyshev, S. Santer, M. Biesalski, Angew. Chem. Int. Ed. 44, 3297–3301 (2005).

    Article  CAS  Google Scholar 

  15. J. Couet, M. Biesalski, Small 4, 1008–1016 (2008).

    Article  CAS  Google Scholar 

  16. N. Bernstein, J.L. Kulp, J. L. III, M.A. Cato, Jr., T.D. Clark, J. Phys. Chem. A 114, 11948–11952 (2010).

    Article  CAS  Google Scholar 

  17. S. Keten, M.J. Buehler, Nano Letters 8, 743–748 (2008).

    Article  CAS  Google Scholar 

  18. S. Keten, Z. Xu, B. Ihle, M.J. Buehler, Nat. Mater. 9, 359–367 (2010).

    Article  CAS  Google Scholar 

  19. A. Ghanaeian, R. Soheilifard, J. Mech. Behav. Biomed. Mater. 86, 105–112 (2018).

    Article  CAS  Google Scholar 

  20. S.-W. Chang, S.J. Shefelbine, M.J. Buehler, Biophys. J. 102, 640–648 (2012).

    Article  CAS  Google Scholar 

  21. L. Thorstholm, D.J. Craik, Drug Discovery Today: Technologies 9, e13–e21 (2012).

    Article  CAS  Google Scholar 

  22. J.D. Hartgerink, T.D. Clark, M.R. Ghadiri, Chem. Euro. J. 4, 1367–1373 (1998).

    Article  CAS  Google Scholar 

  23. S. Fernandez-Lopez et al., Nature 412, 452–455 (2001).

    Article  CAS  Google Scholar 

  24. A.D. Cirac, G. Moiset, J.T. Mika, A. Koçer, P. Salvador, B. Poolman, S.J. Marrink, D. Sengupta, Biophys. J. 100, 2422–2431 (2011).

    Article  CAS  Google Scholar 

  25. A. Khalfa, M. Tarek, J. Phys. Chem. B 114, 2676–2684 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolel-Veetil, M.K., Estrella, L.C.D.R.L., So, C.R. et al. Extremely tough cyclic peptide nanopolymers. MRS Advances 4, 2527–2532 (2019). https://doi.org/10.1557/adv.2019.363

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.363

Navigation