Abstract
We present a new class of bioinspired nanomaterials that are stabilized by a combination of covalent and hydrogen bonds. Prior work by others has shown that cyclic peptides can self-assemble to form supramolecular assemblies through backbone-backbone hydrogen bonding. To improve upon this molecular architecture, we develop a synthesis route to polymerize cyclic peptides and form a linear polymer chain that can transition between a rigid nanorod and an unfolded conformation. For a cyclic peptide polymer containing amine-terminated side chains on each ring, we demonstrate self-assembly can be triggered in aqueous solutions by varying the pH. We measure the elastic modulus of the rigid nanorods to be ca. 50 GPa, which is comparable to our molecular dynamics (MD) prediction (ca. 64 GPa). Our results highlight the uniqueness of our molecular architecture, namely their exemplary toughness (up to 3 GJ m−3), in comparison to other cyclic peptide-based assemblies. Finally, we demonstrate amphiphilic cyclic β-peptides are capable of inhibiting the growth of gram-negative and gram-positive bacteria.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
B.L. Smith, et al., Nature 399, 761–763 (1999).
M. Guthold, et al., Cell Biochem. Biophys. 49, 165–181 (2007).
F. Vollrath, D.P. Knight, Nature 410, 541–548 (2001).
F. Gittes, B. Mickey, J. Nettleton, J. Howard, J. Cell Biol. 120, 923–934 (1993).
M.J. Buehler, Proc. Natl. Acad. Sci. USA 103, 12285–12290 (2006).
I. Agnarsson, M. Kuntner, T.A. Blackledge, PloS ONE 5, e11234 (2010).
S. Keten, M.J. Buehler, J. R. Soc. Interface 7, 1709–1721 (2010).
J.-P. Salvetat, et al., Phys. Rev. Lett. 82, 944–947 (1999).
R.A. Dickie, T.L. Smith, J. Polym. Sci. A2, 687–707 (1969).
M.R. Ghadiri, J.R. Granja, R.A. Milligan, D.E. McRee, N. Khazanovich, Nature 366, 324–327 (1993).
D.T. Bong, T.D. Clark, J.R. Granja, M.R. Ghadiri, Angew. Chem. Int. Ed. 40, 989–1011 (2001).
A. Rising, and J. Johansson, Nat. Chem. Biol. 11, 309–315(2015).
K.P. Fears, M.K. Kolel-Veetil, D.E. Barlow, N. Bernstein, C.R. So, K.J. Wahl, X. Li, J.L. Kulp III, R. Latour, T.D. Clark, Nat. Commun. 9, 4090/1–8 (2018).
J. Couet, J. Samuel, A. Kopyshev, S. Santer, M. Biesalski, Angew. Chem. Int. Ed. 44, 3297–3301 (2005).
J. Couet, M. Biesalski, Small 4, 1008–1016 (2008).
N. Bernstein, J.L. Kulp, J. L. III, M.A. Cato, Jr., T.D. Clark, J. Phys. Chem. A 114, 11948–11952 (2010).
S. Keten, M.J. Buehler, Nano Letters 8, 743–748 (2008).
S. Keten, Z. Xu, B. Ihle, M.J. Buehler, Nat. Mater. 9, 359–367 (2010).
A. Ghanaeian, R. Soheilifard, J. Mech. Behav. Biomed. Mater. 86, 105–112 (2018).
S.-W. Chang, S.J. Shefelbine, M.J. Buehler, Biophys. J. 102, 640–648 (2012).
L. Thorstholm, D.J. Craik, Drug Discovery Today: Technologies 9, e13–e21 (2012).
J.D. Hartgerink, T.D. Clark, M.R. Ghadiri, Chem. Euro. J. 4, 1367–1373 (1998).
S. Fernandez-Lopez et al., Nature 412, 452–455 (2001).
A.D. Cirac, G. Moiset, J.T. Mika, A. Koçer, P. Salvador, B. Poolman, S.J. Marrink, D. Sengupta, Biophys. J. 100, 2422–2431 (2011).
A. Khalfa, M. Tarek, J. Phys. Chem. B 114, 2676–2684 (2010).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kolel-Veetil, M.K., Estrella, L.C.D.R.L., So, C.R. et al. Extremely tough cyclic peptide nanopolymers. MRS Advances 4, 2527–2532 (2019). https://doi.org/10.1557/adv.2019.363
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2019.363