Skip to main content
Log in

Photonics of Sub-Wavelength Nanowire Superlattices

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Semiconductor nanowires (NWs) have widely been studied as an ideal platform for developing electronic, photovoltaic, photonic devices and biological probes in the nanoscale. The ability to synthesize high-quality NWs of various materials with a precise control in shape, doping and crystal structure is the key to the growth of NW-based technologies. In the past decade, there has been growing interest in controllably creating NW heterojunctions and periodically-modulated superlattices (SLs) because it is expected to bring new functionalities that are not present in uniform NWs. In particular, the interaction of NW SLs with light has been one of the central interests because the diameter and modulation length scale are on the same order as the wavelength of light in the optical regime. Also, degenerately-doped semiconductor NWs exhibit localized surface plasmon resonances (LSPRs), which comprises unexpected long-range interactions when the plasmon resonators are regularly placed in NW SLs. In this review, I will summarize the recent progress in photonics research of NW SLs. The topics discussed include preparation and types of NW SLs, light-trapping and light-emission properties, and plasmonic optical- and thermal-transport properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4 (5), 89–90 (1964).

    CAS  Google Scholar 

  2. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith and C. M. Lieber, Nature 415, 617 (2002).

    CAS  Google Scholar 

  3. R. Yan, D. Gargas and P. Yang, Nat. Photonics 3 (10), 569–576 (2009).

    CAS  Google Scholar 

  4. T. J. Kempa, R. W. Day, S.-K. Kim, H.-G. Park and C. M. Lieber, Energy Environ. Sci. 6 (3), 719–733 (2013).

    CAS  Google Scholar 

  5. R. Parameswaran and B. Tian, Acc. Chem. Res. 51 (5), 1014–1022 (2018).

    CAS  Google Scholar 

  6. M. T. Björk, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg and L. Samuelson, Nano Lett. 2 (2), 87–89 (2002).

    Google Scholar 

  7. L. Güniat, P. Caroff and A. Fontcuberta i Morral, Chem. Rev. 119 (15), 8958–8971 (2019).

    Google Scholar 

  8. J. D. Christesen, C. W. Pinion E. M. Grumstrup, J. M. Papanikolas and J. F. Cahoon, Nano Lett. 13 (12), 6281–6286 (2013).

    CAS  Google Scholar 

  9. J. D. Christesen, C. W. Pinion, D. J. Hill, S. Kim and J. F. Cahoon, J. Phys. Chem. Lett. 7 (4), 685–692 (2016).

    CAS  Google Scholar 

  10. I. R. Musin, N. Shin and M. A. Filler, J. Mater. Chem. C 2 (17), 3285–3291 (2014).

    CAS  Google Scholar 

  11. L.-W. Chou, D. S. Boyuk and M. A. Filler, ACS Nano 9 (2), 1250–1256 (2015).

    CAS  Google Scholar 

  12. C.-K. Chiang, Y.-C. Chung, P.-J. Cheng, C.-W. Wu, S.-W. Chang and T.-R. Lin, High Q/Vm hybrid photonic-plasmonic crystal nanowire cavity at telecommunication wavelengths. (SPIE, 2015).

  13. R. E. Algra, M. A. Verheijen, M. T. Borgstrom, L. F. Feiner, G. Immink, W. J. van Enckevort, E. Vlieg and E. P. Bakkers, Nature 456 (7220), 369–372 (2008).

    CAS  Google Scholar 

  14. T. Burgess, S. Breuer, P. Caroff, J. Wong-Leung, Q. Gao, H. Hoe Tan and C. Jagadish, ACS Nano 7 (9), 8105–8114 (2013).

    CAS  Google Scholar 

  15. S. Assali, J. Lähnemann, T. T. T. Vu, K. D. Jöns, L. Gagliano, M. A. Verheijen, N. Akopian, E. P. A. M. Bakkers and J. E. M. Haverkort, Nano Lett. 17 (10), 6062–6068 (2017).

    CAS  Google Scholar 

  16. D. Scarpellini, C. Somaschini, A. Fedorov, S. Bietti, C. Frigeri, V. Grillo, L. Esposito, M. Salvalaglio, A. Marzegalli, F. Montalenti, E. Bonera, P. G. Medaglia and S. Sanguinetti, Nano Lett. 15 (6), 3677–3683 (2015).

    CAS  Google Scholar 

  17. D. Ren, L. Ahtapodov, J. S. Nilsen, J. Yang, A. Gustafsson, J. Huh, G. J. Conibeer, A. T. J. van Helvoort, B.-O. Fimland and H. Weman, Nano Lett. 18 (4), 2304–2310 (2018).

    CAS  Google Scholar 

  18. G. Zhang, M. Takiguchi, K. Tateno, T. Tawara, M. Notomi and H. Gotoh, Sci. Adv. 5 (2), eaat8896 (2019).

    CAS  Google Scholar 

  19. T. J. Kempa, J. F. Cahoon, S.-K. Kim, R. W. Day, D. C. Bell, H.-G. Park and C. M. Lieber, Proc. Natl. Acad. Sci. 109 (5), 1407–1412 (2012).

    CAS  Google Scholar 

  20. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C. M. Lieber, Nature 449 (7164), 885–889 (2007).

    CAS  Google Scholar 

  21. P. Caroff, K. A. Dick, J. Johansson, M. E. Messing, K. Deppert and L. Samuelson, Nat. Nanotechnol. 4 (1), 50–55 (2009).

    CAS  Google Scholar 

  22. K. A. Dick, C. Thelander, L. Samuelson and P. Caroff, Nano Lett. 10 (9), 3494–3499 (2010).

    CAS  Google Scholar 

  23. S. Kim, D. J. Hill, C. W. Pinion, J. D. Christesen, J. R. McBride and J. F. Cahoon, ACS Nano 11 (5), 4453–4462 (2017).

    CAS  Google Scholar 

  24. D. J. Hill, T. S. Teitsworth, S. Kim, J. D. Christesen and J. F. Cahoon, ACS Appl. Mater. Interfaces 9 (42), 37105–37111 (2017).

    CAS  Google Scholar 

  25. L. Dou, M. Lai, C. S. Kley, Y. Yang, C. G. Bischak, D. Zhang, S. W. Eaton, N. S. Ginsberg and P. Yang, Proc. Natl. Acad. Sci. U.S.A. 114 (28), 7216–7221 (2017).

    CAS  Google Scholar 

  26. Z. Luo, Y. Jiang, B. D. Myers, D. Isheim, J. Wu, J. F. Zimmerman, Z. Wang, Q. Li, Y. Wang, X. Chen, V. P. Dravid, D. N. Seidman and B. Tian, Science 348 (6242), 1451–1455 (2015).

    CAS  Google Scholar 

  27. R. W. Day, M. N. Mankin, R. Gao, Y.-S. No, S.-K. Kim, D. C. Bell, H.-G. Park and C. M. Lieber, Nat. Nanotechnol. 10 (4), 345–352 (2015).

    CAS  Google Scholar 

  28. S. Fan and J. D. Joannopoulos, Phys. Rev. B 65 (23), 235112 (2002).

    Google Scholar 

  29. S. Kim, K.-H. Kim, D. J. Hill, H.-G. Park and J. F. Cahoon, Nat. Commun. 9 (1), 2781 (2018).

    Google Scholar 

  30. S. Kim, K.-H. Kim and J. F. Cahoon, Phys. Rev. Lett. 122 (18), 187402 (2019).

    CAS  Google Scholar 

  31. C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos and M. Soljačić, Nat. Rev. Mater. 1, 16048 (2016).

    CAS  Google Scholar 

  32. E. N. Bulgakov and A. F. Sadreev, Phys. Rev. A 96 (1), 013841 (2017).

    Google Scholar 

  33. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau and H. Giessen, Nat. Mater. 8, 758 (2009).

    CAS  Google Scholar 

  34. H.-C. Lee, J.-Y. Na, Y.-J. Moon, J.-S. Park, H.-S. Ee, H.-G. Park and S.-K. Kim, Opt. Lett. 41 (7), 1578–1581 (2016).

    CAS  Google Scholar 

  35. J. S. Choi, K.-H. Kim and Y.-S. No, Opt. Express. 25 (19), 22750–22759 (2017).

    CAS  Google Scholar 

  36. S.-T. Ha, R. Su, J. Xing, Q. Zhang and Q. Xiong, Chem. Sci. 8 (4), 2522–2536 (2017).

    CAS  Google Scholar 

  37. H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin and X. Y. Zhu, Nat. Mater. 14, 636 (2015).

    CAS  Google Scholar 

  38. N. J. Halas, S. Lal, W.-S. Chang, S. Link and P. Nordlander, Chem. Rev. 111 (6), 3913–3961 (2011).

    CAS  Google Scholar 

  39. G. Chen, I. Roy, C. Yang and P. N. Prasad, Chem. Rev. 116 (5), 2826–2885 (2016).

    CAS  Google Scholar 

  40. J. M. Luther, P. K. Jain, T. Ewers and A. P. Alivisatos, Nat. Mater. 10, 361 (2011).

    CAS  Google Scholar 

  41. L. W. Chou and M. A. Filler, Angew. Chem. Int. Ed. Engl. 52 (31), 8079–8083 (2013).

    CAS  Google Scholar 

  42. D. S. Boyuk, L. W. Chou and M. A. Filler, ACS Photonics 3 (2), 184–189 (2016).

    CAS  Google Scholar 

  43. E. J. Tervo, D. S. Boyuk, B. A. Cola, Z. M. Zhang and M. A. Filler, Nanoscale 10 (12), 5708–5716 (2018).

    CAS  Google Scholar 

  44. E. J. Tervo, M. E. Gustafson, Z. M. Zhang, B. A. Cola and M. A. Filler, Appl. Phys. Lett. 114 (16), 163104 (2019).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S. Photonics of Sub-Wavelength Nanowire Superlattices. MRS Advances 4, 2759–2769 (2019). https://doi.org/10.1557/adv.2019.352

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.352

Navigation