Skip to main content
Log in

Approaches to the development of environmentally friendly and resource-saving technology for solargrade silicon production

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Currently, the main material for the production of solar cells is still silicon. More than 70% of the global production of solar cells are silicon based. For solar-grade silicon production the technologies based on the reduction of silicon from organosilicon compounds are mainly used. These technologies are energy-consuming, highly explosive and unsustainable.

The present paper studies the technology of purification of metallurgical-grade silicon by vacuum-thermal and plasma-chemical treatment of silicon melt under electromagnetic stirring using numerical simulation and compares this technology with the existing ones (silane technologies and Elkem Solar silicon (ESS) production process) in terms of energy consumption, environmental safety and the process scalability.

It is shown that the proposed technology is environmentally safe, scalable and has low power consumption. The final product of this technology is multicrystalline silicon, ready for silicon wafer production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Ceccaroli, E. Ovrelid and S. Pizzini, Solar Silicon Processes: Technologies, Challenges, and Opportunities, (CRC Press Tayler & Francis group, 2016), p.258.

  2. W.O. Ramos, F.D. Lindholm, P.A. Ramachandran, A. Rodríguez and C. del Cañizo, Deposition reactors for solar grade silicon: A comparative thermal analysis of a Siemens reactor and a fluidized bed reactor, Netherlands: N. p., 2015.

  3. A.F.B. Braga, S.P. Moreira, P.R. Zampieri, J.M.G. Bacchin and P.R. Mei, Sol. Energy Mater. Sol. Cells 92, 418–424 (2008).

    Article  CAS  Google Scholar 

  4. Y. Delannoy, J. Cryst. Growth 360, 61–67 (2012).

    Article  CAS  Google Scholar 

  5. W. Lee, W. Yoon and C. Park, J. Cryst. Growth 312, 146–148 (2009).

    Article  CAS  Google Scholar 

  6. S.S. Zheng, W.H. Chen, J Cai, J.T. Li, C. Chen and X.T. Luo, Metallurgical and Materials Transactions B 41, 1268 (2010).

    Article  CAS  Google Scholar 

  7. J. Safarian and M. Tangstad. Metallurgical and Materials Transactions B 43(6), 1427–1445 (2012).

    Article  CAS  Google Scholar 

  8. W. Dong, Q. Wang, Xu Peng, Yi Tan and Da C. Jiang, Materials Science Forum 675–677, 45– 48 (2011).

    Article  CAS  Google Scholar 

  9. N. Nakamura, H. Baba, Y. Sakaguchi, S. Hiwasa and Y. Kato, J. Japan Inst. Met. 67, 583 (2003).

    Article  CAS  Google Scholar 

  10. C. Alemany, C Trassy, Bernard Pateyron, K.-I. Li and Y. Delannoy, Sol. Energy Mater. Sol. Cells 72, 41 (2002).

    Article  CAS  Google Scholar 

  11. S.M. Karabanov, D.V. Suvorov, D.Y. Tarabrin, E.V. Slivkin, V.A. Korotchenko, A.N. Vlasov, O.A. Belyakov, A.S. Karabanov and V.L. Dshkhunyan, Study of interaction of a plasma jet with the silicon melt surface under the conditions of its high turbulence, 2017 EEEIC / I&CPS Europe, Milan, 2017, pp. 377–381.

  12. S. M. Karabanov, V. I. Yasevich, D. V. Suvorov and A.S. Karabanov, Mathematical modeling and experimental research of the method of plasma chemical purification of metallurgical-grade silicon, 2016 EEEIC, Florence, 2016, pp. 1–5.

  13. P. Li, S. Ren, D. Jiang, J. Li, L. Zhang and Y. Tan, J. Cryst. Growth 437, 14–19 (2016).

    Article  CAS  Google Scholar 

  14. Ch. Kudla, A.T. Blumenau, F. Büllesfeld, N. Dropka, Ch. Frank-Rotsch, F. Kiessling, O. Klein, P. Lange, W. Miller, U. Rehse, U. Sahr, M. Schellhorn, G. Weidemann, M. Ziem, G. Bethin, R. Fornari, M. Müller, J. Sprekels, V. Trautmann and P. Rudolph, J. Cryst. Growth 365, 54–58 (2013).

    Article  CAS  Google Scholar 

  15. N. Dropka, Ch. Frank-Rotsch, P. Rudolph, J. Cryst. Growth 365, 64–72(2013).

    Article  CAS  Google Scholar 

  16. P. Rudolph, J. Cryst. Growth 310, 1298–1306 (2008).

    Article  CAS  Google Scholar 

  17. S.M. Karabanov, D.V. Suvorov, D.Y. Tarabrin, E.V. Slivkin, O.A. Belyakov and A.S. Karabanov, Study of Electromagnetic Stirring of Silicon Melt by Mathematic Modeling,, 2018 EEEIC / I&CPS Europe, Palermo, 2018, DOI:10.1109/EEEIC.2018.8494593.

  18. Santara, Fatoumata & Delannoy, Yves & Autruffe, Antoine. J. Cryst. Growth 340, 41–46 (2012).

    Article  CAS  Google Scholar 

  19. M.J. de Wild-Scholten, R. Gløckner, J.-O. Odden, G. Halvorsen and R. Tronstad, LCA comparison of the Elkem Solar metallurgical route and conventional gas routes to solar silicon, 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, 1–5 September, 2008.

  20. Q. Yu, L. Liu, Z. Li, and P. Su, J. Cryst. Growth 401, 285–290 ( 2016).

    Article  Google Scholar 

  21. K. Tang, E.J. Øvrelid, G. Tranell, M. Tangstad. Thermochemical and kinetic databases for the solar cell silicon materials, The Twelfth International Ferroalloys Congress. – June 6 – 9, 2010. Helsinki, Finland

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karabanov, S.M., Suvorov, D.V., Tarabrin, D.Y. et al. Approaches to the development of environmentally friendly and resource-saving technology for solargrade silicon production. MRS Advances 4, 1937–1947 (2019). https://doi.org/10.1557/adv.2019.311

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.311

Navigation