Skip to main content
Log in

Solution Process Feasible Highly Efficient Organic Light Emitting Diode with Hybrid Metal Oxide Based Hole Injection/Transport Layer

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Organic light emitting diodes (OLEDs) have drawn great attention owing to their potential applications in high-quality flat display panels and smart solid-state lighting. Over the last three decades, numerous approaches have been made on material design and device physics to achieve high-efficiency and long-lifespan. Herein, we report a novel tactic to employ solution-processed hybrid metal oxide, molybdenum trioxide-tungsten trioxide (MoO3:WO3), as an efficient and stable hole injection/transport (HIL/HTL) and electron blocking layer for efficient OLEDs. By using phosphorescent orange-red emitter tris(2-phenylquinoline)-iridium(III) Ir(2-phq)3, MoO3:WO3 HIL based OLED device exhibits a power efficiency of 27.7 lm W1 and 22.9 lm W1 at 100 and 1000 cd m−2, respectively, which are 89% and 157% higher than that of conventional OLED device consisting of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) as an HIL. Moreover, the resulted device also displays 1.6 times lower turn-on voltage and 3.0 time higher brightness as compare to other counter part. The higher device performances of OLED device may be attributed to robust hole transporting ability, balanced charge carrier in the recombination zone and non-acidic nature of designed HIL. Our results demonstrate that a novel alternative approach based on transition metal oxide hybrid HIL/HTL as a substitute to PEDOT:PSS for high-efficiency solution process OLEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. B. Geffroy, P. L. Roy and C. Prat, Polymer International 55, 572–582 (2006).

    Article  CAS  Google Scholar 

  2. C. W. Tang and V. A. VanSlyke, Appl. Phys. Lett. 51, 913–915 (1987).

    Article  CAS  Google Scholar 

  3. D. Yokoyama, J. Mater. Chem. 21, 19187–19198 (2011).

    Article  CAS  Google Scholar 

  4. M. A. Baldo, D. F. Obrien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature 395, 151–154 (1998).

    Article  CAS  Google Scholar 

  5. J. H. Jou, S. Kumar, A. Agrawal, T. H. Lia and S. Sahoo, J. Mater. Chem. C 3, 2974–3002 (2015).

    Article  CAS  Google Scholar 

  6. M. A. Baldo, M. Deutsch, P. Burrows, H. Gossenberger, M. Gerstenberg, V. Ban and S. Forrest, Adv. Mater. 10, 1505–1514 (1998).

    Article  CAS  Google Scholar 

  7. J. H. Jou, S. Sahoo, D. K. Dubey, R. A. K. Yadav, S. S. Sujith and S. D. Chavhan, J. Mater. Chem. C 6, 11492–11518 (2018).

    Article  CAS  Google Scholar 

  8. J. H. Jou, S. M. Shen, S. H. Chen, M. H. Wu, W. Wang, H. C. Wang, C. R. Lin, Y. Chou, P. H. Wu and J. J. Shyue, Applied Physics Letters 96, 143306–143308 (2010).

    Article  Google Scholar 

  9. W. Y. Yang, R. A. K. Yadav, D. K. Dubey, C. H. Hsu, Y. Lee, T. W. Liang and J. H. Jou, International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), Kyoto, 18, 1–4 (2018).

    CAS  Google Scholar 

  10. S. Liu, R. Liu, Y. Chen, S. Ho and J. H. Kim, Chemistry of Materials 26, 4528–4534 (2014).

    Article  CAS  Google Scholar 

  11. H. Zhang, Q. Fu, W. Zeng and D. Ma, J. Mater. Chem. C 2, 9620–9624 (2014).

    Article  CAS  Google Scholar 

  12. Y. H. Li, X. Lu, R. Wang, Y. Yang, S. Duhm and M. K. Fung, J. Mater. Chem. C 5, 11751–11757 (2017).

    Article  CAS  Google Scholar 

  13. S. D. Chavhan, T. H. Ou, M. R. Jiang, C. W. Wang and J. H. Jou, J. Phys. Chem. C 122, 18836–18840 (2018).

    Article  CAS  Google Scholar 

  14. R. Yadav, M. Naebe, X. Wang and B. Kandasubramanian, Scientific Reports 6, 29917–29925 (2017).

    Article  Google Scholar 

  15. J. H. Jou, S. H. Peng, C. I. Chiang, Y. L. Chen, Y. X. Lin, Y. C. Jou, C. H. Chen, C. J. Li, W. Wang, S. M. Shen, S. Chen, M. K. Wei, Y. S. Sun, H. W. Hung, M. C. Liu, Y. P. Lin, J. Y. Li and C. W. Wang, J. Mater. Chem. C 1, 1680–1686 (2013).

    Article  CAS  Google Scholar 

  16. L. Wang, Y. Lv, L. Jie, Y. Fan, J. Zhao, Y. Wang and X. Liu, Nanoscale 9, 6748–6754 (2017).

    Article  CAS  Google Scholar 

  17. J. H. Jou, S. Kumar, M. Singh, Y. H. Chen, C. C. Chen and M. T. Lee, Molecules 20, 13005–13030 (2015).

    Article  CAS  Google Scholar 

  18. A. Perumal, H. Faber, N. Y. Gross, P. Pattanasattayavong, C. Burgess, S. Jha, M. A. M. Lachlan, P. N. Stavrinou, D. A. Thomas and D. C. Bradley, Adv. Mater. 27, 93–10 (2015).

    Article  CAS  Google Scholar 

  19. D.K. Dubey, S. Shahoo, C.W. Wang and J.H. Jou, Organic Electronics 69, 232–240 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagar, M.R., Yadav, R.A.K., Dubey, D.K. et al. Solution Process Feasible Highly Efficient Organic Light Emitting Diode with Hybrid Metal Oxide Based Hole Injection/Transport Layer. MRS Advances 4, 1801–1809 (2019). https://doi.org/10.1557/adv.2019.300

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.300

Navigation