Skip to main content
Log in

Preparation and Characterization of Solar Thermal Absorbers by Nanoimprint Lithography and Sputtering

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Selective solar absorbers comprised of plasmonic materials offer great flexibility in design along with a highly promising optical performance. However, the nanopattern generation, typically done with electron beam writing, is a very time-intensive process. In this work, we present a fast, scalable, and flexible method for the fabrication of plasmonic materials by the combination of a deposition mask prepared by nanoimprint lithography and thin film deposition by magnetron sputtering. The fabrication process was first performed on silicon wafer substrates using AFM and SEM measurements to calibrate the deposition time, determine maximal deposition height, and characterize samples. Afterwards, the process was transferred to polished Inconel NiCr-alloy substrates used in high temperature solar absorbers. To investigate the adhesion properties of the nanostructure on the substrate, two different deposition methods were investigated: DC magnetron sputtering and High Power Impulse Magnetron Sputtering (HiPIMS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Bermel, J. Lee, J.D. Joannopoulos, I. Celanovic, and M. Soljacie, Annual Review of Heat Transfer, 15, 231–254 (2012).

    Article  Google Scholar 

  2. A.K. Azad, W.J.M. Kort-Kamp, M. Sykora, N.R. Weisse-Bernstein, T.S. Luk, A.J. Taylor, D.A.R. Dalvit, and H.-T. Chen, Scientific Reports, 6, (2016).

  3. Y. Li, D. Li, D. Zhou, C. Chi, S. Yang, and B. Huang, Solar RRL, 2, 1800057 (2018).

    Article  Google Scholar 

  4. H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, Solar Energy Materials and Solar Cells, 137, 235–242 (2015).

    Article  Google Scholar 

  5. I.E. Khodasevych, L. Wang, A. Mitchell, and G. Rosengarten, Advanced Optical Materials, 3, 852–881 (2015).

    Article  CAS  Google Scholar 

  6. M. Araghchini, Y.X. Yeng, N. Jovanovic, P. Bermel, L.A. Kolodziejski, M. Soljacic, I. Celanovic, and J.D. Joannopoulos, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 29, 061402 (2011).

    Article  Google Scholar 

  7. X. Han, K. He, Z. He, and Z. Zhang, Optics Express, 25, A1072 (2017).

    Article  CAS  Google Scholar 

  8. C.-W. Cheng, M.N. Abbas, C.-W. Chiu, K.-T. Lai, M.-H. Shih, and Y.-C. Chang, Optics Express, 20, 10376–10381 (2012).

    Article  CAS  Google Scholar 

  9. F. Cao, K. McEnaney, G. Chen, and Z. Ren, Energy & Environmental Science, 7, 1615 (2014).

    Article  CAS  Google Scholar 

  10. T. Köpplmayr, L. Häusler, I. Bergmair, and M. Mühlberger, Surface Topography: Metrology and Properties, 3, 024003 (2015).

    Google Scholar 

  11. H. Schift, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 26, 458 (2008).

    Article  CAS  Google Scholar 

  12. V. Rinnerbauer, E. Lausecker, F. Schäffler, P. Reininger, G. Strasser, R.D. Geil, J.D. Joannopoulos, M. Soljačić, and I. Celanovic, Optica, OPTICA, 2, 743–746 (2015).

    Article  CAS  Google Scholar 

  13. J.-M. Kim, K.-H. Park, D.-S. Kim, B. Hwang, S.-K. Kim, H.-M. Chae, B.-K. Ju, and Y.-S. Kim, Applied Surface Science, 429, 138–143 (2018).

    Article  CAS  Google Scholar 

  14. D. Wu, Y. Liu, Z. Xu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Li, R. Ma, J. Zhang, and H. Ye, Solar RRL, 1, 1700049 (2017).

    Article  Google Scholar 

  15. PMGI & LOR Lift-off Resists (2019), Available at: http://microchem.com/Prod-PMGI_LOR.htm, (accessed 08 May 2019).

  16. Nanoimprint Resists (2019), Available at: https://www.microresist.de/en/product/nanoimprint-resists, (accessed 08 May 2019).

  17. N. Gordillo, M. Panizo-Laiz, E. Tejado, I. Fernandez-Martinez, A. Rivera, J.Y. Pastor, C.G. de Castro, J. del Rio, J.M. Perlado, and R. Gonzalez-Arrabal, Applied Surface Science, 316, 1–8 (2014).

    Article  CAS  Google Scholar 

  18. R.D. Nagel, S. Filser, T. Zhang, A. Manzi, K. Schönleber, J. Lindsly, J. Zimmermann, T.L. Maier, G. Scarpa, K. Krischer, and P. Lugli, Journal of Applied Physics, 121, 084305 (2017).

    Article  Google Scholar 

  19. A. Anders, Surface and Coatings Technology, 257, 308–325 (2014).

    Article  CAS  Google Scholar 

  20. V. Rinnerbauer, Y. Shen, J.D. Joannopoulos, M. Soljačić, F. Schäffler, and I. Celanovic, Opt. Express, OE, 22, A1895–A1906 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitteramskogler, T., Haslinger, M.J., Wennberg, A. et al. Preparation and Characterization of Solar Thermal Absorbers by Nanoimprint Lithography and Sputtering. MRS Advances 4, 1905–1911 (2019). https://doi.org/10.1557/adv.2019.285

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.285

Navigation