Abstract
We demonstrate a suspended graphene-(poly(methyl methacrylate) (PMMA) polymer angular displacement actuator enabled by variable elastic modulus of the perforated stacked structure. Azimuthal flexures support a central disc-shaped membrane, and compression of the membrane can be used to control the rotation of the entire structure. Irradiating the PMMA on graphene stack with 5 kV electrons in a convention scanning electron microscope reduces the elastic modulus of the PMMA and allows graphene’s built in strain to dominate and compress the flexures, thus rotating the actuator.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
D. Miller and B. Alemán, “Shape tailoring to enhance and tune the properties of graphene nanomechanical resonators,” 2D Mater., vol. 4, no. 2, p. 25101, May 2017.
Melina K. Blees, Arthur W. Barnard, Peter A. Rose, Samantha P. Roberts, Kathryn L. McGill, Pinshane Y. Huang, Alexander R. Ruyack, Joshua W. Kevek, Bryce Kobrin, David A. Muller & Paul L. McEuen, “Graphene kirigami,” Nature, vol. 524, no. 7564, pp. 204–207, Aug. 2015.
Marc Z. Miskin, Kyle J. Dorsey, Baris Bircan, Yimo Han, David A. Muller, Paul L. McEuen, and Itai Cohen, “Graphene-based bimorphs for micron-sized, autonomous origami machines.,” Proc. Natl. Acad. Sci. U. S. A., vol. 115, no. 3, pp. 466–470, Jan. 2018.
S. Matt Gilbert, Gabriel Dunn, Amin Azizi, Thang Pham, Brian Shevitski, Edgar Dimitrov, Stanley Liu, Shaul Aloni and Alex Zettl, “Fabrication of Subnanometer-Precision Nanopores in Hexagonal Boron Nitride,” Sci. Rep., vol. 7, no. 1, p. 15096, Dec. 2017.
S. M. Gilbert, S. Liu, G. Schumm, and A. Zettl, “Nanopatterning Hexagonal Boron Nitride with Helium Ion Milling: Towards Atomically-Thin, Nanostructured Insulators,” in MRS Advances, vol. 3, no. 6–7, pp. 327–331 2018.
S. O. Cho and H. Y. Jun, “Surface hardening of poly(methyl methacrylate) by electron irradiation,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 237, no. 3–4, pp. 525–532, Aug. 2005.
J. S. Papanu, D. W. Hess, D. S. Soane (Soong), and A. T. Bell, “Swelling of poly(methyl methacrylate) thin films in low molecular weight alcohols,” J. Appl. Polym. Sci., vol. 39, no. 4, pp. 803–823, Feb. 1990.
Y. Jin, D. Harrington, A. A. Rachford, and J. J. Rack, “Stimulating changes in the elastic modulus of polymer materials by molecular photochromism,” RSC Adv., vol. 4, no. 108, pp. 62920–62925, Nov. 2014.
A. A. Abdel-Wahab, S. Ataya, and V. V. Silberschmidt, “Temperature-dependent mechanical behaviour of PMMA: Experimental analysis and modelling,” Polym. Test., vol. 58, pp. 86–95, Apr. 2017.
W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. F. Crommie, and A. Zettl, “Boron nitride substrates for high mobility chemical vapor deposited graphene,” Appl. Phys. Lett., vol. 98, no. 24, p. 242105, Jun. 2011.
Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah, Dongxing Yang, Richard Piner, Aruna Velamakanni, Inhwa Jung, Emanuel Tutuc, Sanjay K. Banerjee, Luigi Columbo, Rodney S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils.,” Science, vol. 324, no. 5932, pp. 1312–4, Jun. 2009.
Changyao Chen and J. Hone, “Graphene nanoelectromechanical systems,” Proc. IEEE, vol. 101, no. 7, pp. 1766–1779, Jul. 2013.
C. Chen et al., “Performance of monolayer graphene nanomechanical resonators with electrical readout,” Nat. Nanotechnol., vol. 4, no. 12, pp. 861–867, Dec. 2009.
Benjamin Alemán, Michael Rousseas, Yisheng Yang, Will Regan, Michael Crommie, Feng Wang, Alex Zettl, “Polymer-free, low tension graphene mechanical resonators,” Phys. status solidi - Rapid Res. Lett., vol. 7, no. 12, pp. 1064–1066, Dec. 2013.
H. I. Rasool, C. Ophus, W. S. Klug, A. Zettl, and J. K. Gimzewski, “Measurement of the intrinsic strength of crystalline and polycrystalline graphene,” Nat. Commun., vol. 4, no. 1, p. 2811, Dec. 2013.
K. Zhang and M. Arroyo, “Understanding and strain-engineering wrinkle networks in supported graphene through simulations,” J. Mech. Phys. Solids, vol. 72, pp. 61–74, Dec. 2014.
S.-E. Zhu, M. Krishna Ghatkesar, C. Zhang, and G. C. A. M. Janssen, “Graphene based piezoresistive pressure sensor,” Appl. Phys. Lett., vol. 102, no. 16, p. 161904, Apr. 2013.
A. D. Smith, F. Niklaus, A. Paussa, S. Vaziri, A.C. Fischer, M. Sterner, F. Forsberg, A. Delin, D. Esseni, P. Palestri, M. Ostling, and M.C. Lemme, “Electromechanical Piezoresistive Sensing in Suspended Graphene Membranes,” Nano Lett., vol. 13, no. 7, pp. 3237–3242, Jul. 2013.
M. Kumar and H. Bhaskaran, “Ultrasensitive Room-Temperature Piezoresistive Transduction in Graphene-Based Nanoelectromechanical Systems,” Nano Lett., vol. 15, no. 4, pp. 2562–2567, Apr. 2015.
Tetsuhiko F. Teshima, Calum S. Henderson, Makoto Takamura, Yui Ogawa, Shengnan Wang, Yoshiaki Kashimura, Satoshi Sasaki, Toichiro Goto, Hiroshi Nakashima, and Yuko Ueno, “Self-Folded Three-Dimensional Graphene with a Tunable Shape and Conductivity,” Nano Lett., vol. 19, no. 1, pp. 461–470, Jan. 2019.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Gilbert, S.M., Molnar, A., Horton-Bailey, D. et al. Strain-controlled Graphene-Polymer Angular Actuator. MRS Advances 4, 2161–2167 (2019). https://doi.org/10.1557/adv.2019.276
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2019.276