Skip to main content
Log in

Optical Properties of Thin Films of Haycockite

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Thin films of haycockite Cu4Fe5S8 on glass substrates were deposited by flash evaporation technique from powders of this compound. The composition of thin films correspond to the atomic content of Cu, Fe, and S of 24.13, 27.90, and 47.97 at.% with the Cu/Fe and S/(Cu + Fe) atomic ratios of 0.87 and 0.92 respectively, whereas the corresponding theoretical values for this material amount to 0.80 and 0.89. The as-prepared thin films of haycockite consist of a set of separate fractions of approximately identical areas of about 400 - 600 µm2. It can be assumed that this structure evolved during cooling down of thin films since it completely covers the surface of thin films. A small inclusion of a second phase with the chemical composition close to talnakhite Cu9Fe8S16 is also observed. Haycockite Cu4Fe5S8 is found to be a direct gap semiconductor with the energy band gap Eg equal to 1.26 eV as determined using both transmission and surface photovoltage methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.A. Wolden, J. Kurtin, J.B. Baxter, I. Repins, S.E. Shaheen, J.T. Torvik, A.A. Rockett, V.M. Fthenakis, and E.S. Aydil, J. Vac. Sci. Technol. A, 29, 030801 (2011).

    Article  Google Scholar 

  2. National Renewable Energy Laboratory, Best Research-Cell Efficiencies. United States of America: National Renewable Energy Laboratory, 2014.

    Google Scholar 

  3. R.A. Yund and G. Kullerud, J. Petrol. 7, Pt. 3, 454 (1966).

    Article  CAS  Google Scholar 

  4. L.J. Cabri, Econ. Geol. 62, 910 (1967).

    Article  CAS  Google Scholar 

  5. L.J. Cabri and D.C. Harris, Econ. Geol. 66, 673 (1971).

    Article  CAS  Google Scholar 

  6. L.J. Cabri, Econ. Geol. 68, 443 (1973).

    Article  CAS  Google Scholar 

  7. V. Raghavan, J. Phase Equilib. Diff. 25, 450 (2004).

    Article  CAS  Google Scholar 

  8. L.J. Cabri and S.R. Hall, Am. Mineral. 57, 689 (1972).

    CAS  Google Scholar 

  9. J.F. Rowland, S.R. Hall, Acta Cryst. B31, 2105 (1975).

    Article  CAS  Google Scholar 

  10. B.V. Korzun, S. Schorr, A.N. Gavrilenko, V.L. Matukhin, J.A. Fedotova, M. Rusu, and M.C. Lux-Steiner, Program and Abstracts of the 18-th International Conference on Ternary and Multinary Compounds (ICTMC18), Salzburg, Austria, August 27 - 31, 2012 / -Salzburg, 2012. – Abstract P09-P09, 132.

  11. S. Schorr, B.V. Korzun, L.S. Lobanovski, K.I. Yanushkevich, A.I. Galyas, V.R. Sobol, A.N. Gavrilenko, V.L. Matukhin, Abstracts of European Congress and Exhibition on Advanced Materials and Processes EUROMAT2013, Sevilla, Spain, September 8 - 13, 2013/ - Sevilia, 2013. - Abstract E1II-P-TH-PS2-22.

  12. B. Korzun, A. Galyas, J. Electron. Mater. 48, 3351 (2019).

    Article  CAS  Google Scholar 

  13. V. Duzhko, V. Yu. Timoshenko, F. Koch, Th. Dittrich, Phys. Rev. B64, 075204 (2001).

    Article  Google Scholar 

  14. J.I. Pankove, Optical Processes in Semiconductors, Prentice-Hall, Inc. (1971).

  15. T. Oguchi, K. Sato, T. Teranishi, J. Phys. Soc. Jpn. 48, 123 (1980).

    Article  CAS  Google Scholar 

  16. J. Tauc, Mater. Res. Bull. 3, 37 (1968).

    Article  CAS  Google Scholar 

  17. Iu.I. Ukhanov, Optical Properties of Semiconductors, Moscow, Izdatel’stvo Nauka, 1977. 368 p. In Russian.

    Google Scholar 

  18. W.H. Brattain, Phys. Rev. 72, 345 (1947).

    Google Scholar 

  19. L. Kronik, Y. Shapira, Surf. Sci. Rep., 37, 1 (1999).

    Article  CAS  Google Scholar 

  20. V. Hinrichs, S. Fengler, R. Lascona, L. Kulyuk, Th. Dittrich, M. Ch. Lux-Steiner, M. Rusu, Proc. 28th European Photovoltaic Solar Energy Conference and Exhibition, Villepinte, France, September 30 - October 4, 2013, 349 (2013).

  21. S. Fengler, Th. Dittrich, M. Rusu, J. Appl. Phys. 118, 035501 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korzun, B., Rusu, M., Dittrich, T. et al. Optical Properties of Thin Films of Haycockite. MRS Advances 4, 2023–2033 (2019). https://doi.org/10.1557/adv.2019.273

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.273

Navigation