Skip to main content
Log in

Magnetic Properties of Proton Irradiated Mn3Si2Te6 van der Waals Single Crystals

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The bulk van der Waals crystal Mn3Si2Te6 (MST) has been irradiated with a proton beam of 2 MeV at a fluence of 1×1018 H+ cm-2. The temperature dependent magnetization measurements show a drastic decrease in the magnetization of 49.2% in the H//c direction observed in ferrimagnetic state. This decrease in magnetization is also reflected in the isothermal magnetization curves. No significant change in the ferrimagnetic transition temperature (75 K) was reflected after irradiation. Electron paramagnetic resonance (EPR) spectroscopy shows no magnetically active defects present after irradiation. Here, experimental findings gathered from MST bulk crystals via magnetic measurements, magnetocaloric effect, and heat capacity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Duong, S. J. Yun, and Y. H. Lee, “van der Waals Layered Materials: Opportunities and Challenges,” ACS Nano, vol. 11, no. 12, pp. 11803–11830, Dec. 2017.

    Article  CAS  Google Scholar 

  2. P. Ajayan, P. Kim, and K. Banerjee, “Two-dimensional van der Waals materials,” Phys. Today, vol. 69, no. 9, pp. 38–44, Aug. 2016.

    Article  CAS  Google Scholar 

  3. C. Gong and X. Zhang, “Two-dimensional magnetic crystals and emergent heterostructure devices,” Science, vol. 363, no. 6428, p. eaav4450, Feb. 2019.

    Article  CAS  Google Scholar 

  4. Y. Liu, V. N. Ivanovski, and C. Petrovic, “Critical behavior of the van der Waals bonded ferromagnet Fe3–x GeTe2,” Phys. Rev. B, vol. 96, no. 14, p. 144429, Oct. 2017.

    Article  Google Scholar 

  5. B. Huang et al., “Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit,” Nature, vol. 546, no. 7657, pp. 270–273, Jun. 2017.

    Article  CAS  Google Scholar 

  6. M. Bonilla et al., “Strong room-temperature ferromagnetism in VSe 2 monolayers on van der Waals substrates,” Nat. Nanotechnol., vol. 13, no. 4, p. 289, Apr. 2018.

    Article  CAS  Google Scholar 

  7. Z. Fei et al., “Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2,” Nat. Mater., vol. 17, no. 9, p. 778, Sep. 2018.

    Article  CAS  Google Scholar 

  8. M.-W. Lin et al., “Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material,” J. Mater. Chem. C, vol. 4, no. 2, pp. 315–322, Dec. 2015.

    Article  Google Scholar 

  9. A. F. May et al., “Magnetic order and interactions in ferrimagnetic Mn3Si2Te6,” Phys. Rev. B, vol. 95, no. 17, p. 174440, May 2017.

    Article  Google Scholar 

  10. Y. Liu and C. Petrovic, “Critical behavior and magnetocaloric effect in Mn3Si2Te6,” Phys. Rev. B, vol. 98, no. 6, p. 064423, Aug. 2018.

    Article  CAS  Google Scholar 

  11. U. Abdurakhmanov, A. B. Granovskii, A. A. Radkovskaya, M. Kh. Usmanov, Sh. M. Sharipov, and V. P. Yugai, “The influence of neutron and proton irradiation on the magnetization of biotite,” Phys. Solid State, vol. 44, no. 2, pp. 312–314, Feb. 2002.

    Article  CAS  Google Scholar 

  12. S. W. Han et al., “Controlling Ferromagnetic Easy Axis in a Layered MoS2 Single Crystal,” Phys. Rev. Lett., vol. 110, no. 24, p. 247201, Jun. 2013.

    Article  Google Scholar 

  13. L. Madauß et al., “Defect engineering of single- and few-layer MoS2 by swift heavy ion irradiation,” 2D Mater., vol. 4, p. 015034, Mar. 2017.

    Article  Google Scholar 

  14. P. Esquinazi, D. Spemann, R. Höhne, A. Setzer, K.-H. Han, and T. Butz, “Induced Magnetic Ordering by Proton Irradiation in Graphite,” Phys. Rev. Lett., vol. 91, no. 22, p. 227201, Nov. 2003.

    Article  CAS  Google Scholar 

  15. K. W. Lee and C. E. Lee, “Electron Spin Resonance of Proton-Irradiated Graphite,” Phys. Rev. Lett., vol. 97, no. 13, p. 137206, Sep. 2006.

    Article  Google Scholar 

  16. S. Mathew et al., “Magnetism in MoS2 induced by proton irradiation,” Appl. Phys. Lett., vol. 101, no. 10, p. 102103, Sep. 2012.

    Article  Google Scholar 

  17. R.-W. Zhou et al., “Ferromagnetism in proton irradiated 4H-SiC single crystal,” AIP Adv., vol. 5, no. 4, p. 047146, Apr. 2015.

    Article  Google Scholar 

  18. R. C. Walker, T. Shi, E. C. Silva, I. Jovanovic, and J. A. Robinson, “Radiation effects on two-dimensional materials (Phys. Status Solidi A 12⁄2016),” Phys. Status Solidi A, vol. 213, no. 12, pp. 3268–3268, 2016.

    Article  Google Scholar 

  19. A. V. Krasheninnikov and K. Nordlund, “Ion and electron irradiation-induced effects in nanostructured materials,” J. Appl. Phys., vol. 107, no. 7, p. 071301, Apr. 2010.

    Article  Google Scholar 

  20. A. Geremew et al., “Proton-Irradiation-Immune Electronics Implemented with Two-Dimensional Charge-Density-Wave Devices,” ArXiv190100551 Cond-Mat Physicsphysics, Jan. 2019.

  21. L. Shao et al., “Standardization of accelerator irradiation procedures for simulation of neutron induced damage in reactor structural materials,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At., vol. 409, pp. 251–254, Oct. 2017.

    Article  CAS  Google Scholar 

  22. J. G. Gigax, H. Kim, E. Aydogan, F. A. Garner, S. Maloy, and L. Shao, “Beam-contamination-induced compositional alteration and its neutron-atypical consequences in ion simulation of neutron-induced void swelling,” Mater. Res. Lett., vol. 5, no. 7, pp. 478–485, Nov. 2017.

    Article  CAS  Google Scholar 

  23. J. P. Joshi and S. V. Bhat, “On the analysis of broad Dysonian electron paramagnetic resonance spectra,” J. Magn. Reson., vol. 168, no. 2, pp. 284–287, Jun. 2004.

    Article  CAS  Google Scholar 

  24. C. P. Poole and H. A. Farach, “Line Shapes in Electron Spin Resonance,” p. 33.

  25. C. P. J. Poole and H. A. Farach, Handbook of Electron Spin Resonance. Springer Science & Business Media, 1999.

  26. P. A. Gonzalez Beermann, B. R. McGarvey, S. Muralidharan, and R. C. W. Sung, “EPR Spectra of Mn2+-Doped ZnS Quantum Dots,” Chem. Mater., vol. 16, no. 5, pp. 915–918, Mar. 2004.

    Article  CAS  Google Scholar 

  27. H. N. Ng and C. Calvo, “Crystal Structure of and Electron Paramagnetic Resonance of Mn2+ in Cd2(NH4)2(SO4)3,” Can. J. Chem., vol. 53, no. 10, pp. 1449–1455, May 1975.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez, L.M., Saiz, C.L., Cosio, A. et al. Magnetic Properties of Proton Irradiated Mn3Si2Te6 van der Waals Single Crystals. MRS Advances 4, 2177–2184 (2019). https://doi.org/10.1557/adv.2019.260

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.260

Navigation