Abstract
The bulk van der Waals crystal Mn3Si2Te6 (MST) has been irradiated with a proton beam of 2 MeV at a fluence of 1×1018 H+ cm-2. The temperature dependent magnetization measurements show a drastic decrease in the magnetization of 49.2% in the H//c direction observed in ferrimagnetic state. This decrease in magnetization is also reflected in the isothermal magnetization curves. No significant change in the ferrimagnetic transition temperature (75 K) was reflected after irradiation. Electron paramagnetic resonance (EPR) spectroscopy shows no magnetically active defects present after irradiation. Here, experimental findings gathered from MST bulk crystals via magnetic measurements, magnetocaloric effect, and heat capacity are discussed.
Similar content being viewed by others
References
D. L. Duong, S. J. Yun, and Y. H. Lee, “van der Waals Layered Materials: Opportunities and Challenges,” ACS Nano, vol. 11, no. 12, pp. 11803–11830, Dec. 2017.
P. Ajayan, P. Kim, and K. Banerjee, “Two-dimensional van der Waals materials,” Phys. Today, vol. 69, no. 9, pp. 38–44, Aug. 2016.
C. Gong and X. Zhang, “Two-dimensional magnetic crystals and emergent heterostructure devices,” Science, vol. 363, no. 6428, p. eaav4450, Feb. 2019.
Y. Liu, V. N. Ivanovski, and C. Petrovic, “Critical behavior of the van der Waals bonded ferromagnet Fe3–x GeTe2,” Phys. Rev. B, vol. 96, no. 14, p. 144429, Oct. 2017.
B. Huang et al., “Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit,” Nature, vol. 546, no. 7657, pp. 270–273, Jun. 2017.
M. Bonilla et al., “Strong room-temperature ferromagnetism in VSe 2 monolayers on van der Waals substrates,” Nat. Nanotechnol., vol. 13, no. 4, p. 289, Apr. 2018.
Z. Fei et al., “Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2,” Nat. Mater., vol. 17, no. 9, p. 778, Sep. 2018.
M.-W. Lin et al., “Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material,” J. Mater. Chem. C, vol. 4, no. 2, pp. 315–322, Dec. 2015.
A. F. May et al., “Magnetic order and interactions in ferrimagnetic Mn3Si2Te6,” Phys. Rev. B, vol. 95, no. 17, p. 174440, May 2017.
Y. Liu and C. Petrovic, “Critical behavior and magnetocaloric effect in Mn3Si2Te6,” Phys. Rev. B, vol. 98, no. 6, p. 064423, Aug. 2018.
U. Abdurakhmanov, A. B. Granovskii, A. A. Radkovskaya, M. Kh. Usmanov, Sh. M. Sharipov, and V. P. Yugai, “The influence of neutron and proton irradiation on the magnetization of biotite,” Phys. Solid State, vol. 44, no. 2, pp. 312–314, Feb. 2002.
S. W. Han et al., “Controlling Ferromagnetic Easy Axis in a Layered MoS2 Single Crystal,” Phys. Rev. Lett., vol. 110, no. 24, p. 247201, Jun. 2013.
L. Madauß et al., “Defect engineering of single- and few-layer MoS2 by swift heavy ion irradiation,” 2D Mater., vol. 4, p. 015034, Mar. 2017.
P. Esquinazi, D. Spemann, R. Höhne, A. Setzer, K.-H. Han, and T. Butz, “Induced Magnetic Ordering by Proton Irradiation in Graphite,” Phys. Rev. Lett., vol. 91, no. 22, p. 227201, Nov. 2003.
K. W. Lee and C. E. Lee, “Electron Spin Resonance of Proton-Irradiated Graphite,” Phys. Rev. Lett., vol. 97, no. 13, p. 137206, Sep. 2006.
S. Mathew et al., “Magnetism in MoS2 induced by proton irradiation,” Appl. Phys. Lett., vol. 101, no. 10, p. 102103, Sep. 2012.
R.-W. Zhou et al., “Ferromagnetism in proton irradiated 4H-SiC single crystal,” AIP Adv., vol. 5, no. 4, p. 047146, Apr. 2015.
R. C. Walker, T. Shi, E. C. Silva, I. Jovanovic, and J. A. Robinson, “Radiation effects on two-dimensional materials (Phys. Status Solidi A 12⁄2016),” Phys. Status Solidi A, vol. 213, no. 12, pp. 3268–3268, 2016.
A. V. Krasheninnikov and K. Nordlund, “Ion and electron irradiation-induced effects in nanostructured materials,” J. Appl. Phys., vol. 107, no. 7, p. 071301, Apr. 2010.
A. Geremew et al., “Proton-Irradiation-Immune Electronics Implemented with Two-Dimensional Charge-Density-Wave Devices,” ArXiv190100551 Cond-Mat Physicsphysics, Jan. 2019.
L. Shao et al., “Standardization of accelerator irradiation procedures for simulation of neutron induced damage in reactor structural materials,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At., vol. 409, pp. 251–254, Oct. 2017.
J. G. Gigax, H. Kim, E. Aydogan, F. A. Garner, S. Maloy, and L. Shao, “Beam-contamination-induced compositional alteration and its neutron-atypical consequences in ion simulation of neutron-induced void swelling,” Mater. Res. Lett., vol. 5, no. 7, pp. 478–485, Nov. 2017.
J. P. Joshi and S. V. Bhat, “On the analysis of broad Dysonian electron paramagnetic resonance spectra,” J. Magn. Reson., vol. 168, no. 2, pp. 284–287, Jun. 2004.
C. P. Poole and H. A. Farach, “Line Shapes in Electron Spin Resonance,” p. 33.
C. P. J. Poole and H. A. Farach, Handbook of Electron Spin Resonance. Springer Science & Business Media, 1999.
P. A. Gonzalez Beermann, B. R. McGarvey, S. Muralidharan, and R. C. W. Sung, “EPR Spectra of Mn2+-Doped ZnS Quantum Dots,” Chem. Mater., vol. 16, no. 5, pp. 915–918, Mar. 2004.
H. N. Ng and C. Calvo, “Crystal Structure of and Electron Paramagnetic Resonance of Mn2+ in Cd2(NH4)2(SO4)3,” Can. J. Chem., vol. 53, no. 10, pp. 1449–1455, May 1975.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Martinez, L.M., Saiz, C.L., Cosio, A. et al. Magnetic Properties of Proton Irradiated Mn3Si2Te6 van der Waals Single Crystals. MRS Advances 4, 2177–2184 (2019). https://doi.org/10.1557/adv.2019.260
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2019.260