Skip to main content
Log in

Electronic Functions in Liquid-Crystalline Nanostructures with High Polarization

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Multifunctionality was created by coupling an electronic charge carrier transport with ionic conductivity or ferroelectricity in polarized liquid crystal phases. Liquid-crystalline perylene bisimide derivatives bearing cyclotetrasiloxane rings and triethylene oxide chains formed nanosegregated columnar structures which could conduct ions as well as electrons. The spin-coated thin films could be insolubilized by the exposure on acid vapors and display electrochromism. Phenylterthiophene derivatives bearing a chiral alkyl side chain exhibited a ferroelectric phase, in which a photovoltaic effect was caused by the interaction between photogenerated charge carriers with the internal electric field formed by the spontaneous polarization of the ferroelectric phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Pisula, M. Zorn, J.Y. Chang, K. Müllen, R. Zentel, Macromol. Rapid Commun. 30, 1179–1202 (2009).

    Article  CAS  Google Scholar 

  2. M. O’Neill, S.M. Kelly, Adv. Mater. 23 (2011) 566–584.

    Article  Google Scholar 

  3. M. Funahashi, Polym. J., 41, 459–469 (2009).

    Article  CAS  Google Scholar 

  4. M. Funahashi, F. Zhang, and N. Tamaoki, Adv. Mater., 19, 353–358 (2007).

    Article  CAS  Google Scholar 

  5. M. Funahashi, T. Ishii, A. Sonoda, ChemPhysChem, 14, 2750–2758 (2013).

    Article  CAS  Google Scholar 

  6. T. Kato, N. Mizoshita, K. Kishimoto, Angew. Chem. Int. Ed., 45, 38–68 (2006).

    Article  CAS  Google Scholar 

  7. M. Funahashi, J. Mater. Chem. C, 2, 7451–7459 (2014).

    Article  CAS  Google Scholar 

  8. M. Funahashi and T. Kato, Liq. Cryst., 42, 909–917 (2015).

    CAS  Google Scholar 

  9. T. Kato, M. Yoshio, T. Ichikawa, B. Soberats, H. Ohno, and M. Funahashi, Nat. Rev. Mater., 2, 17001 (2017).

    Article  Google Scholar 

  10. M. Funahashi and A. Sonoda, Dalton Trans., 42, 15987–15994 (2013).

    Article  CAS  Google Scholar 

  11. M. Funahashi, Mater. Chem. Front., 1, 1137–1146 (2017).

    Article  CAS  Google Scholar 

  12. Y. Funatsu, A. Sonoda, and M. Funahashi, J. Mater. Chem. C, 3, 1982 (2015).

    Article  CAS  Google Scholar 

  13. A. Seki and M. Funahashi, Chem. Lett., 45, 616–618 (2016).

    Article  CAS  Google Scholar 

  14. A. Seki and Y. Funatsu, M. Funahashi, Phys. Chem. Chem. Phys., 19, 16446 (2017).

    Article  CAS  Google Scholar 

  15. A. Seki and M. Funahashi, Org. Electr., 62, 311 (2018).

    Article  CAS  Google Scholar 

  16. M. Funahashi, M. Yamaoka, K. Takenami, A. Sonoda, J. Mater. Chem. C, 1, 7872–7878 (2013).

    Article  CAS  Google Scholar 

  17. K. Takenami, S. Uemura, M. Funahashi, RSC Advances, 6, 5474–5584 (2016).

    Article  CAS  Google Scholar 

  18. Y. Hosokawa, M. Misaki, S. Yamamoto, M. Torii, K. Ishida, Y. Ueda, Appl. Phys. Lett., 100, 203305 (2012).

    Article  Google Scholar 

  19. T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, and S.-W. Cheong, Science, 324, 63–66 (2009).

    Article  CAS  Google Scholar 

  20. H. Sasabe, T. Nakayama, K. Kumazawa, S. Miyata, E. Fukada, Polym. J., 13, 967–973(1981).

    Article  CAS  Google Scholar 

  21. A. Sugita, K. Suzuki, S. Tasaka, Phys. Rev. B, 69, 212201 (2004).

    Article  Google Scholar 

  22. I. Tabushi, K. Yamamura, and K. Kominami, J. Am. Chem. Soc., 108, 6409–6410 (1986).

    Article  CAS  Google Scholar 

  23. K. Tanabe, T. Yasuda, M. Yoshio, and T. Kato, Org. Lett. 9, 4271–4274 (2007).

    Article  CAS  Google Scholar 

  24. H. Chang, T. Shiozaki, A. Kamata, K. Kishida, T. Ohmori, D. Kiriya, T. Yamauchi, H. Furukawa and S. Kitagawa, J. Mater. Chem. 17, 4136–4138 (2007).

    Article  CAS  Google Scholar 

  25. I. Aprahamian, T. Yasuda, T. Ikeda, S. Saha, W.R. Dichtel, K. Isoda, T. Kato and J. F. Stoddart, Angew. Chem. Int. Ed., 46, 4675–4679 (2007).

    Article  CAS  Google Scholar 

  26. S. Yazaki, M. Funahashi, J. Kagimoto, H. Ohno, T. Kato, J. Am. Chem. Soc., 132, 7702–7708 (2010).

    Article  CAS  Google Scholar 

  27. T. Sasaki, Chem. Rec., 6, 43–51 (2006).

    Article  CAS  Google Scholar 

  28. H. Anetai, Y. Wada, T. Takeda, N. Hoshino, S. Yamamoto, M. Mitsuishi, T. Takenobu, T. Akutagawa, J. Phys. Chem. Lett., 6, 1813–1818 (2015).

    Article  CAS  Google Scholar 

  29. A. V. Gorbunov, M. G. Iglesias, J. Guilleme, T. D. Cornelissen, W. S. C. Roelofs, T. Torres, D. González-Rodríguez, E. W. Meijer, M. Kemerink, Sci. Adv., 3, e1701017 (2017).

    Article  Google Scholar 

  30. A. V. Gorbunov, A. T. Haedler, T. Putzeys, R. H. Zha, H.-W. Schmidt, M. Kivala, I. Urbanavičiūtė, M. Wübbenhorst, E. W. Meijer, and M. Kemerink, ACS Appl. Mater. Interfaces, 8, 15535–15542 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Funahashi, M. Electronic Functions in Liquid-Crystalline Nanostructures with High Polarization. MRS Advances 4, 1733–1740 (2019). https://doi.org/10.1557/adv.2019.247

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.247

Navigation