Skip to main content
Log in

Resonant optical studies of GaAs/AlGaAs Multiple Quantum Well based Bragg Structures at excited states

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Optical reflectance (OR) and electro-reflectance (ER) spectroscopies were employed to study the resonant optical properties of GaAs/AlGaAs multiple quantum wells based Resonant Bragg Structures (RBS) at excited states. The RBS samples have 60 periods of GaAs/AlGaAs quantum well/barrier grown on semi-insulating GaAs substrates by molecular beam epitaxy with slightly different thicknesses of well/barrier. We observed enhanced OR and ER features when exciton energy coincides with the energy of the Bragg reflection peak, a double resonance condition. Bragg peak can significantly be tuned by changing the angle of incidence of the light. Exciton energies can be tuned by changing the temperature, external electric field and the thickness of the quantum wells. By tuning the Bragg peak for double resonance in the RBS samples of different thicknesses, we observed the electro-reflectance features related to the transitions of x(e2-hh2), x(e2-hh1), x(e2-lh1), x(e2-hh3) and x(e1-hh3) excitons along with the sharp features of x(e1-hh1) and x(e1-lh1) ground state exciton transitions from the ER experiments. The excitonic transitions x(e2-hh1), x(e2-lh1) and x(e2-hh3) which are prohibited at zero electric field, were also observed due to the increased overlap of the electron and hole wave functions caused by the electric field; built-in electric field or applied DC bias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Princeton University Press, Princeton (1995).

  2. L. A. Coldren, H. Temkin, C. W. Wilmsen, Cambridge Univ. Press, Cambridge (1999).

  3. E. L. Ivchenko, A. I. Nesvizhenskii and S. Jorda, Phys. Solid State 36, 1156 (1994).

    Google Scholar 

  4. M. Hubner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, Phys. Rev. Lett. 83, 2841 (1999).

    Article  CAS  Google Scholar 

  5. J. P. Prineas, J. Y. Zhou, J. Kuhl, H. M. Gibbs, G. Khitrova, S. W. Koch, and A. Knorr, Appl. Phys. Lett. 81, 4332 (2002).

    Article  CAS  Google Scholar 

  6. J. P. Prineas, C. Ell, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, Phys. Rev. B 61, 13863 (2000).

    Article  CAS  Google Scholar 

  7. J. P. Prineas, C. Cao, M. Yildirim, W. Johnston, and M. Reddy. J. Appl. Phys. 100, 063101 (2006).

    Article  Google Scholar 

  8. V. V. Chaldyshev, A. S. Shkolnik, V. P. Evtikhiev, and T. Holden, Semiconductors, 41, 1455 (2007).

    Article  Google Scholar 

  9. V. V. Chaldyshev, A. S. Shkolnik, V. P. Evtikhiev, and T. Holden, J. Mater. Sci., Materials in Electronics 19, 699 (2008).

    Article  CAS  Google Scholar 

  10. D. Goldberg, L. I. Deych, A. A. Lisyansky, Z. Shi, V. M. Menon, V. Tokranov, M. Yakimov and S. Oktyabrsky, Nature Photonics 3, 662 (2009).

    Article  CAS  Google Scholar 

  11. V. V. Chaldyshev, D. E. Sholokhov, and A. P. Vasil’ev, Semiconductors 44, 1222 (2010).

    Article  CAS  Google Scholar 

  12. V. V. Chaldyshev, Y. Chen, A. N. Poddubny, A. P. Vasil’ev, and Z. Liu, Appl. Phys. Lett. 98, 073112 (2011).

    Article  Google Scholar 

  13. V. V. Chaldyshev, E. V. Kundelev, E. V. Nikitina, A. Yu. Egorov, A. A. Gorbatsevich, Semiconductors 46, 1016 (2012).

    Article  CAS  Google Scholar 

  14. Y. Chen, N. Maharjan, Z. Liu, and M. L. Nakarmi, V. V. Chaldyshev, E. V. Kundelev, A. N. Poddubny, A. P. Vasil’ev, and M. A. Yagovkina, and N. M. Shakya, J. Appl. Phys. 121, 103101 (2017).

    Article  Google Scholar 

  15. S. Adachi, J. Appl. Phys. 58, R1 (1985).

    Article  CAS  Google Scholar 

  16. B. Gerlach, J. Wuesthoff, M. O. Dzero, and M. A. Smondyrev, Phys. Rev. B 58, 10568 (1998).

    Article  CAS  Google Scholar 

  17. X. Yin and F. H. Pollak, Appl. Phys. Lett. 59, 2305 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maharjan, N., Chaldyshev, V. & Nakarmi, M.L. Resonant optical studies of GaAs/AlGaAs Multiple Quantum Well based Bragg Structures at excited states. MRS Advances 4, 651–659 (2019). https://doi.org/10.1557/adv.2019.21

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.21

Navigation