Skip to main content

Advertisement

Log in

Nano-patterning on Si (100) surface under specific ion irradiation environment

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Nano-patterned surfaces have potential applications in the development of efficient solar cells through multiple internal reflections and may be used to fulfil the energy demand of rural India. Therefore, the basic understanding of growth mechanism of patterns under ion irradiation is much required. Here, the ripple patterns are grown on Si (100) surfaces for two specific ion irradiation conditions. First, the two set of samples (namely set-A and set-B) of Si (100) are irradiated by 50 keVAr+ ion beam at oblique (60°) and normal incidence, respectively, using ion fluence of 5×1016 ions/cm2. The aim of this first stage irradiation at two different angles is the creation of different depth locations of amorphous/crystalline (a/c) interface while keeping the free surface similar in surface features, which is a crucial parameter in surface growth. Further, the sequential second stage irradiation is carried out at 60° for the same energy of Ar beam for the fluences 3×1017 to 9×1017 ions/cm2 to see the evolution of ripple patterns. Atomic force microscopy (AFM) study shows that the ripple pattern ordering is better in set-A rather than set-B. Lateral correlation length of each ripple structure surface is computed by autocorrelation function while roughness exponent is measured with height-height correlation function. Fractals behaviors of patterned on Si (100) surface are found to be sensitive to the two stage irradiation approach. The understanding of the mechanism of nano-patterns formation may be useful to develop efficient solar systems for the needs of energy in rural India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kumar, A. Kumar, D. Kanjilal, An approach to tune the amplitude of surface ripple patterns, Applied Physics Letters, 103 (2013) 131604.

    Article  Google Scholar 

  2. R. Yadav, T. Kumar, A. Mittal, S. Dwivedi, D. Kanjilal, Fractal characterization of the silicon surfaces produced by ion beam irradiation of varying fluences, Applied Surface Science, 347 (2015) 706–712.

    Article  CAS  Google Scholar 

  3. A. Keller, S. Facsko, Ion-induced nanoscale ripple patterns on Si surfaces: theory and experiment, Materials, 3 (2010) 4811–4841.

    Article  CAS  Google Scholar 

  4. T. Kumar, S. Khan, U. Singh, S. Verma, D. Kanjilal, Formation of nanodots on GaAs by 50keV Ar+ ion irradiation, Applied Surface Science, 258 (2012) 4148–4151.

    Article  CAS  Google Scholar 

  5. T.K. Chini, D.P. Datta, S.R. Bhattacharyya, Ripple formation on silicon by medium energy ion bombardment, Journal of Physics: Condensed Matter, 21 (2009) 224004.

    Google Scholar 

  6. T. Kumar, M. Kumar, S. Verma, D. Kanjilal, Fabrication of ordered ripple patterns on GaAs (100) surface using 60 keV Ar+ beam irradiation, Surface Engineering, 29 (2013) 543–546.

    Article  CAS  Google Scholar 

  7. Y. S. Katharria, Sandeep Kumar, P. S. Lakshmy, and D. Kanjilal, Self-organization of 6H- SiC (0001) surface under keV ion irradiation, Journal of Applied Physics 102 (2007) 044301

    Article  Google Scholar 

  8. YS Katharria, S Kumar, AT Sharma, D Kanjilal, Nano- and micro-scale patterning of Si (1 0 0) under keV ion irradiation, Applied Surface Science 253 (16) (2007) 6824–6828

    Article  CAS  Google Scholar 

  9. D.K. Avasthi, G.K. Mehta, Swift heavy ions for materials engineering and nanostructuring, Springer Science & Business Media, 2011.

  10. S.A. Khan, D.K. Avasthi, D.C. Agarwal, U.B. Singh, D. Kabiraj, Quasi-aligned gold nanodots on a nanorippled silica surface: experimental and atomistic simulation investigations, Nanotechnology, 22 (2011) 235305.

    Article  Google Scholar 

  11. A. Toma, D. Chiappe, D. Massabo, C. Boragno, F. Buatier de Mongeot, Self-organized metal nanowire arrays with tunable optical anisotropy, Applied Physics Letters, 93 (2008) 163104.

    Article  Google Scholar 

  12. T. Oates, A. Keller, S. Noda, S. Facsko, Self-organized metallic nanoparticle and nanowire arrays from ion-sputtered silicon templates, Applied physics letters, 93 (2008) 063106.

    Article  Google Scholar 

  13. S. KV, D. Kumar, A. Gupta, Growth study of Co thin film on nanorippled Si (100) substrate, Applied Physics Letters, 98 (2011) 123111.

    Article  Google Scholar 

  14. Masoumeh Nazari, Ali Masoudi, Parham Jafari, Peyman Irajizad, Varun Kashyap, and Hadi Ghasemi, Ultrahigh Evaporative Heat Fluxes in Nanoconfined Geometries, Langmuir, 35 (1), (2019) 78–85

    Article  CAS  Google Scholar 

  15. A. Rickman, The commercialization of silicon photonics, Nature Photonics, 8 (2014) 579–582.

    Article  CAS  Google Scholar 

  16. V. Smirnov, D. Kibalov, O. Orlov, V. Graboshnikov, Technology for nanoperiodic doping of a metal-oxide-semiconductor field-effect transistor channel using a self-forming wave-ordered structure, Nanotechnology, 14 (2003) 709.

    Article  CAS  Google Scholar 

  17. T. Kumar, U. Singh, M. Kumar, S. Ojha, D. Kanjilal, Tuning of ripple patterns and wetting dynamics of Si (100) surface using ion beam irradiation, Current Applied Physics, 14 (2014) 312–317.

    Article  Google Scholar 

  18. R. Yadav, T. Kumar, V. Baranwal, Vandana, M. Kumar, P. Priya, S. Pandey, A. Mittal, Fractal characterization and wettability of ion treated silicon surfaces, Journal of Applied Physics, 121 (2017) 055301.

    Article  Google Scholar 

  19. L. Hong, X. Wang, H. Zheng, H. Wang, H. Yu, Femtosecond laser fabrication of large-area periodic surface ripple structure on Si substrate, Applied Surface Science, 297 (2014) 134–138.

    Article  CAS  Google Scholar 

  20. Chris M. Bhadra, Marco Werner, Vladimir A. Baulin, Vi Khanh Truong, Mohammad Al Kobaisi, Song Ha Nguyen, Armandas Balcytis, Saulius Juodkazis, James Y. Wang, David E. Mainwaring, Russell J. Crawford, Elena P. Ivanova, Subtle Variations in Surface Properties of Black Silicon Surfaces Influence the Degree of Bactericidal Efficiency, Nano-Micro Lett. (2018) 10: 36

  21. Li X, Bactericidal mechanism of nanopatterned surfaces, Physical Chemistry Chemical Physics 18(2) (2016) 1311–1316

    Article  CAS  Google Scholar 

  22. M. Körner, K. Lenz, M. Liedke, T. Strache, A. Mücklich, A. Keller, S. Facsko, J. Fassbender, Interlayer exchange coupling of Fe/Cr/Fe thin films on rippled substrates, Physical Review B, 80 (2009) 214401.

    Article  Google Scholar 

  23. R.M. Bradley, J.M. Harper, Theory of ripple topography induced by ion bombardment, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 6 (1988) 2390–2395.

    Article  CAS  Google Scholar 

  24. M. Rost, J. Krug, Anisotropic Kuramoto-Sivashinsky equation for surface growth and erosion, Physical review letters, 75 (1995) 3894.

    Article  CAS  Google Scholar 

  25. R. Cuerno, H.A. Makse, S. Tomassone, S.T. Harrington, H.E. Stanley, Stochastic model for surface erosion via ion sputtering: Dynamical evolution from ripple morphology to rough morphology, Physical Review Letters, 75 (1995) 4464.

    Article  CAS  Google Scholar 

  26. T. Kim, C.-M. Ghim, H. Kim, D. Kim, D. Noh, N. Kim, J. Chung, J. Yang, Y. Chang, T. Noh, Kinetic roughening of ion-sputtered Pd (001) surface: beyond the Kuramoto-Sivashinsky model, Physical review letters, 92 (2004) 246104.

    Article  CAS  Google Scholar 

  27. T. Kumar, A. Kumar, D.C. Agarwal, N.P. Lalla, D. Kanjilal, Ion beam-generated surface ripples: new insight in the underlying mechanism, Nanoscale research letters, 8 (2013) 15.

    Article  Google Scholar 

  28. T. Kumar, M. Kumar, V. Panchal, P. Sahoo, D. Kanjilal, Energy-separated sequential irradiation for ripple pattern tailoring on silicon surfaces, Applied Surface Science, 357 (2015) 184–188.

    Article  CAS  Google Scholar 

  29. U.B. Singh, R.P. Yadav, R.K. Pandey, D.C. Agarwal, C. Pannu, A.K. Mittal, Insight mechanisms of surface structuring and wettability of ion-treated Ag thin films, The Journal of Physical Chemistry C, 120 (2016) 5755–5763.

    Article  CAS  Google Scholar 

  30. M. Pelliccione, T.-M. Lu, Evolution of Thin-Film Morphology, Springer, 2008.

  31. R. Yadav, M. Kumar, A. Mittal, A. Pandey, Fractal and multifractal characteristics of swift heavy ion induced self-affine nanostructured BaF2 thin film surfaces, Chaos: An Interdisciplinary Journal of Nonlinear Science, 25 (2015) 083115.

    Article  CAS  Google Scholar 

  32. R. Yadav, M. Kumar, A. Mittal, S. Dwivedi, A.C. Pandey, On the scaling law analysis of nanodimensional LiF thin film surfaces, Materials Letters, 126 (2014) 123–125.

    Article  CAS  Google Scholar 

  33. D.P. Datta, T.K. Chini, Atomic force microscopy study of 60-keV Ar-ion-induced ripple patterns on Si (100), Physical Review B, 69 (2004) 235313.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, R.P., Vandana, Malik, J. et al. Nano-patterning on Si (100) surface under specific ion irradiation environment. MRS Advances 4, 1673–1682 (2019). https://doi.org/10.1557/adv.2019.162

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.162

Navigation