Abstract
Nano-patterned surfaces have potential applications in the development of efficient solar cells through multiple internal reflections and may be used to fulfil the energy demand of rural India. Therefore, the basic understanding of growth mechanism of patterns under ion irradiation is much required. Here, the ripple patterns are grown on Si (100) surfaces for two specific ion irradiation conditions. First, the two set of samples (namely set-A and set-B) of Si (100) are irradiated by 50 keVAr+ ion beam at oblique (60°) and normal incidence, respectively, using ion fluence of 5×1016 ions/cm2. The aim of this first stage irradiation at two different angles is the creation of different depth locations of amorphous/crystalline (a/c) interface while keeping the free surface similar in surface features, which is a crucial parameter in surface growth. Further, the sequential second stage irradiation is carried out at 60° for the same energy of Ar beam for the fluences 3×1017 to 9×1017 ions/cm2 to see the evolution of ripple patterns. Atomic force microscopy (AFM) study shows that the ripple pattern ordering is better in set-A rather than set-B. Lateral correlation length of each ripple structure surface is computed by autocorrelation function while roughness exponent is measured with height-height correlation function. Fractals behaviors of patterned on Si (100) surface are found to be sensitive to the two stage irradiation approach. The understanding of the mechanism of nano-patterns formation may be useful to develop efficient solar systems for the needs of energy in rural India.
Similar content being viewed by others
References
T. Kumar, A. Kumar, D. Kanjilal, An approach to tune the amplitude of surface ripple patterns, Applied Physics Letters, 103 (2013) 131604.
R. Yadav, T. Kumar, A. Mittal, S. Dwivedi, D. Kanjilal, Fractal characterization of the silicon surfaces produced by ion beam irradiation of varying fluences, Applied Surface Science, 347 (2015) 706–712.
A. Keller, S. Facsko, Ion-induced nanoscale ripple patterns on Si surfaces: theory and experiment, Materials, 3 (2010) 4811–4841.
T. Kumar, S. Khan, U. Singh, S. Verma, D. Kanjilal, Formation of nanodots on GaAs by 50keV Ar+ ion irradiation, Applied Surface Science, 258 (2012) 4148–4151.
T.K. Chini, D.P. Datta, S.R. Bhattacharyya, Ripple formation on silicon by medium energy ion bombardment, Journal of Physics: Condensed Matter, 21 (2009) 224004.
T. Kumar, M. Kumar, S. Verma, D. Kanjilal, Fabrication of ordered ripple patterns on GaAs (100) surface using 60 keV Ar+ beam irradiation, Surface Engineering, 29 (2013) 543–546.
Y. S. Katharria, Sandeep Kumar, P. S. Lakshmy, and D. Kanjilal, Self-organization of 6H- SiC (0001) surface under keV ion irradiation, Journal of Applied Physics 102 (2007) 044301
YS Katharria, S Kumar, AT Sharma, D Kanjilal, Nano- and micro-scale patterning of Si (1 0 0) under keV ion irradiation, Applied Surface Science 253 (16) (2007) 6824–6828
D.K. Avasthi, G.K. Mehta, Swift heavy ions for materials engineering and nanostructuring, Springer Science & Business Media, 2011.
S.A. Khan, D.K. Avasthi, D.C. Agarwal, U.B. Singh, D. Kabiraj, Quasi-aligned gold nanodots on a nanorippled silica surface: experimental and atomistic simulation investigations, Nanotechnology, 22 (2011) 235305.
A. Toma, D. Chiappe, D. Massabo, C. Boragno, F. Buatier de Mongeot, Self-organized metal nanowire arrays with tunable optical anisotropy, Applied Physics Letters, 93 (2008) 163104.
T. Oates, A. Keller, S. Noda, S. Facsko, Self-organized metallic nanoparticle and nanowire arrays from ion-sputtered silicon templates, Applied physics letters, 93 (2008) 063106.
S. KV, D. Kumar, A. Gupta, Growth study of Co thin film on nanorippled Si (100) substrate, Applied Physics Letters, 98 (2011) 123111.
Masoumeh Nazari, Ali Masoudi, Parham Jafari, Peyman Irajizad, Varun Kashyap, and Hadi Ghasemi, Ultrahigh Evaporative Heat Fluxes in Nanoconfined Geometries, Langmuir, 35 (1), (2019) 78–85
A. Rickman, The commercialization of silicon photonics, Nature Photonics, 8 (2014) 579–582.
V. Smirnov, D. Kibalov, O. Orlov, V. Graboshnikov, Technology for nanoperiodic doping of a metal-oxide-semiconductor field-effect transistor channel using a self-forming wave-ordered structure, Nanotechnology, 14 (2003) 709.
T. Kumar, U. Singh, M. Kumar, S. Ojha, D. Kanjilal, Tuning of ripple patterns and wetting dynamics of Si (100) surface using ion beam irradiation, Current Applied Physics, 14 (2014) 312–317.
R. Yadav, T. Kumar, V. Baranwal, Vandana, M. Kumar, P. Priya, S. Pandey, A. Mittal, Fractal characterization and wettability of ion treated silicon surfaces, Journal of Applied Physics, 121 (2017) 055301.
L. Hong, X. Wang, H. Zheng, H. Wang, H. Yu, Femtosecond laser fabrication of large-area periodic surface ripple structure on Si substrate, Applied Surface Science, 297 (2014) 134–138.
Chris M. Bhadra, Marco Werner, Vladimir A. Baulin, Vi Khanh Truong, Mohammad Al Kobaisi, Song Ha Nguyen, Armandas Balcytis, Saulius Juodkazis, James Y. Wang, David E. Mainwaring, Russell J. Crawford, Elena P. Ivanova, Subtle Variations in Surface Properties of Black Silicon Surfaces Influence the Degree of Bactericidal Efficiency, Nano-Micro Lett. (2018) 10: 36
Li X, Bactericidal mechanism of nanopatterned surfaces, Physical Chemistry Chemical Physics 18(2) (2016) 1311–1316
M. Körner, K. Lenz, M. Liedke, T. Strache, A. Mücklich, A. Keller, S. Facsko, J. Fassbender, Interlayer exchange coupling of Fe/Cr/Fe thin films on rippled substrates, Physical Review B, 80 (2009) 214401.
R.M. Bradley, J.M. Harper, Theory of ripple topography induced by ion bombardment, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 6 (1988) 2390–2395.
M. Rost, J. Krug, Anisotropic Kuramoto-Sivashinsky equation for surface growth and erosion, Physical review letters, 75 (1995) 3894.
R. Cuerno, H.A. Makse, S. Tomassone, S.T. Harrington, H.E. Stanley, Stochastic model for surface erosion via ion sputtering: Dynamical evolution from ripple morphology to rough morphology, Physical Review Letters, 75 (1995) 4464.
T. Kim, C.-M. Ghim, H. Kim, D. Kim, D. Noh, N. Kim, J. Chung, J. Yang, Y. Chang, T. Noh, Kinetic roughening of ion-sputtered Pd (001) surface: beyond the Kuramoto-Sivashinsky model, Physical review letters, 92 (2004) 246104.
T. Kumar, A. Kumar, D.C. Agarwal, N.P. Lalla, D. Kanjilal, Ion beam-generated surface ripples: new insight in the underlying mechanism, Nanoscale research letters, 8 (2013) 15.
T. Kumar, M. Kumar, V. Panchal, P. Sahoo, D. Kanjilal, Energy-separated sequential irradiation for ripple pattern tailoring on silicon surfaces, Applied Surface Science, 357 (2015) 184–188.
U.B. Singh, R.P. Yadav, R.K. Pandey, D.C. Agarwal, C. Pannu, A.K. Mittal, Insight mechanisms of surface structuring and wettability of ion-treated Ag thin films, The Journal of Physical Chemistry C, 120 (2016) 5755–5763.
M. Pelliccione, T.-M. Lu, Evolution of Thin-Film Morphology, Springer, 2008.
R. Yadav, M. Kumar, A. Mittal, A. Pandey, Fractal and multifractal characteristics of swift heavy ion induced self-affine nanostructured BaF2 thin film surfaces, Chaos: An Interdisciplinary Journal of Nonlinear Science, 25 (2015) 083115.
R. Yadav, M. Kumar, A. Mittal, S. Dwivedi, A.C. Pandey, On the scaling law analysis of nanodimensional LiF thin film surfaces, Materials Letters, 126 (2014) 123–125.
D.P. Datta, T.K. Chini, Atomic force microscopy study of 60-keV Ar-ion-induced ripple patterns on Si (100), Physical Review B, 69 (2004) 235313.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Yadav, R.P., Vandana, Malik, J. et al. Nano-patterning on Si (100) surface under specific ion irradiation environment. MRS Advances 4, 1673–1682 (2019). https://doi.org/10.1557/adv.2019.162
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2019.162