Skip to main content

Advertisement

Log in

Silver nanoparticles produced by laser ablation for a study on the effect of SERS with low laser power on N719 dye and Rhodamine-B

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The effect of surface-enhanced Raman spectroscopy (SERS) was investigated in N719 dye thin films deposited on silicon wafer with a thin film of silver nanoparticles (Ag-NPs) fabricated by laser ablation in an aqueous solution, using a NdYAG laser (λ = 1064nm). Optical absorption spectroscopy of the Ag-NPs colloidal solution shows an absorption peak at λ = 400nm, associated with a localized surface plasmon resonance in the Ag-NPs. Scanning electron microscopy (SEM) reveals that these NPs have an approximately spherical shape, with their diameter being tunable by laser power intensity. Raman spectroscopy measurements were performed using low laser power to avoid damage to the N719 dye films. Thus, a small Raman signal is obtained. The Raman intensity was greatly increased when the N719 film was deposited on a substrate with a thin film of Ag-NPs due to the SERS effect. The process was also used in Rhodamine-B to clearly demonstrate the SERS effect obtained by the use of these NPs produced by laser ablation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. M.A. Garcia, J. Phys. D. Appl. Phys. 45 (38), 389501 (2012).

    Article  CAS  Google Scholar 

  2. Schmid, Gunter and others, Nanoparticles: From theory to application, (Publisher Wiley VCH, 2005)

  3. C. Phillip, D.B. Ingram and S. Linic, J. Phys. Chem. C 114 (19), 9173–9177 (2010).

    Article  CAS  Google Scholar 

  4. D. Takagi, H. Hibino, Satoru Suzuki, Yoshihiro Kobayashi and Yoshikazu Homma. Nano Lett. 7 (8), 2272–2275 (2007).

    CAS  Google Scholar 

  5. Michael D. Brown, Teeraporn Suteewong, R. Sai Santosh Kumar, Valerio D’Innocenzo, Annamaria Petrozza, Michael M. Lee, Ulrich Wiesner and Henry J. Snaith, Nano Lett. 11 (2), 438–445 (2011).

    Article  CAS  Google Scholar 

  6. F.C. Chen, C.W. Chu, J. He, Y. Yanga and J.L. Lin Appl. Phys. lett. 85 (15), 3295–3297 (2004).

    Article  CAS  Google Scholar 

  7. K.L. Kelly, E. Coronado, L.L. Zhao and G.C. Schatz, J. Phys. Chem. B 107 (3), 668–677 (2003).

    Article  CAS  Google Scholar 

  8. Z. Xu, Y. Hou and S. Sun, J. Am. Chem. Soc. 129 (28), 8698–8699 (2007).

    Article  CAS  Google Scholar 

  9. A. Shakeel and S. Ikram, J. Photochemistry and Photobiology B: Biology 161, 141–153 (2016).

    Article  CAS  Google Scholar 

  10. Oleg V. Salata, J. Nanobiotechnology 2 (1), 3 (2004).

    Article  Google Scholar 

  11. W. Fritzsche and T.A. Taton, Nanotechnology 14 (12), 63–73 (2003).

    Article  Google Scholar 

  12. V.A. Ermakov, J.M.C. da Silva Filho, L.G. Bonato, N.V. Vardhan Mogili, F.E. Montoro, F. Iikawa, A.F. Nogueira, C.L. Cesar, E. Jimenez-Villar and F.C. Marques, ACS Omega 3 (2), 2027–2032 (2018).

    Article  CAS  Google Scholar 

  13. A.V. Simakin, V.V. Voronov, N.A. Kirichenko and G.A. Shafeev, Appl. Phys. A, 79 (4–6), 1127–1132 (2004).

    Article  CAS  Google Scholar 

  14. W. Haiss, N.T. Thanh, J. Aveyard and D.G. Fernig, Analytical Chemistry 79 (11), 4215–4221 (2007).

    Article  CAS  Google Scholar 

  15. Jyh-Lih Wu, Fang-Chung Chen, Yu-Sheng Hsiao, Fan-Ching Chien, Peilin Chen, Chun-Hong Kuo, Michael H. Huang, and Chain-Shu Hsu, ACS Nano 5 (2), 959–967 (2011).

    Article  CAS  Google Scholar 

  16. M.A. Green and S. Pillai, Nat. Photonics 6 (3), 130–132 (2012).

    Article  CAS  Google Scholar 

  17. J. M. da Silva Filho and F.C. Marques, MRS Advances 3 (32), 1843–1848 (2018).

    Article  CAS  Google Scholar 

  18. H.A. Atwater and A. Polman, Nature materials 9 (3), 205 (2010).

    Article  CAS  Google Scholar 

  19. D. Duche, P. Torchio, L. Escoubas, F. Monestier, J.J. Simon, F. Flory and G. Mathian, Sol. Energy Mater. Sol. Cells 93 (8), 1377–1382 (2009).

    Article  CAS  Google Scholar 

  20. E. Jimenez-Villar, M. C. S. Xavier, N.U. Wetter, C. Mestre, W.S. Martins, G.F. Basso, V.A. Ermakov, F.C. Marques, and G.F. de Sá, Photonics Research 6(10), 929–942 (2018).

    Article  CAS  Google Scholar 

  21. N.J. Durr, T. Larson, D.K. Smith, B.A. Korgel, K. Sokolov and A. Ben-Yakar, Nano Lett. 7 (4), 941–945 (2007).

    Article  CAS  Google Scholar 

  22. G. Fuertes, O.L. Sánchez-Muñoz, E. Pedrueza, K. Abderrafi, J. Salgado, E. Jiménez, Langmuir 27 (6), 2826–2833 (2011).

    Article  CAS  Google Scholar 

  23. Y. Yan, S.C. Warren, P. Fuller, B.A. Grzybowski, Nat. Nanotechnol 11 (7), 603–608 (2016).

    Article  CAS  Google Scholar 

  24. S. Lal, S. Link, N.J. Halas, Nat. Photonics 1 (11), 641–648 (2007).

    Article  CAS  Google Scholar 

  25. E. Hutter and J.H. Fendler, Adv. Mater 16 (19), 1685–1706 (2004).

    Article  CAS  Google Scholar 

  26. D.M. Schaadt, B. Feng, and E.T. Yu. Appl. Phys. Lett. 86 (6), 063106 (2005).

    Article  CAS  Google Scholar 

  27. K.A. Willets, R.P. Van Duyne, Annu. Rev. Phys. Chem. 58, 267–297 (2007).

    Article  CAS  Google Scholar 

  28. V.A. Ermakov, E. Jimenez-Villar, J.M.C. da Silva Filho, E. Yassitepe, N.V. Vardhan Mogili, F. Iikawa, G.F. de Sá, C.L. Cesar and F.C. Marques, Langmuir 33, 2257–2262 (2017).

    Article  CAS  Google Scholar 

  29. D. Derkacs, S.H. Lim, P. Matheu, W. Mara, E.T. Yub, Appl. Phys. Lett. 89 (9), 093103 (2006).

    Article  CAS  Google Scholar 

  30. H. Wang, D.W. Brandl, P. Nordlander, and N.J. Halas, Acc. of chem. Res., 40(1), 53–62 (2007).

    Article  CAS  Google Scholar 

  31. P.K. Jain, X. Huang, I.H. El-Sayed M.H. El-Sayed, Acc. Chem. Res. 41, 1578–86 (2008).

    Article  CAS  Google Scholar 

  32. V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A.M. Funston, C. Novo, P. Mulvaney, et al, Chem. Soc. Rev. 37, 1792–805 (2008).

    Article  CAS  Google Scholar 

  33. M.A. Garcia, J. Phys. D Appl. Phys. 44, 283001–020 (2011).

    Article  CAS  Google Scholar 

  34. B. Wiley, Y. Sun, B. Mayers and Y. Xia, Chem. A-Eur. J. 11 (2), 454–463 (2005).

    Article  CAS  Google Scholar 

  35. H. Ma, B. Yin, S. Wang, Y. Jiao, W. Pan, S. Huang, S. Chen, F. Meng, Chem. Phys. Chem. 5 (1), 68–75 (2004).

    Article  CAS  Google Scholar 

  36. F.E. Kruis, H. Fissan, B. Rellinghaus, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 69, 329–334 (2000).

    Article  Google Scholar 

  37. F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe, J. Phys. Chem. B 105 (22), 5114–5120 (2001).

    Article  CAS  Google Scholar 

  38. D.D. Evanoff, G.J. Chumanov, Phys. Chem. B 108 (37), 13957–13962 (2004).

    Article  CAS  Google Scholar 

  39. G. Merga, R. Wilson, G. Lynn, B.H. Milosavljevic, D.J. Meisel, Phys. Chem. C, 111 (33), 12220–12226 (2007).

    Article  CAS  Google Scholar 

  40. G.W. Yang, Prog. Mater. Sci. 52 (4), 648–698 (2007).

    Article  CAS  Google Scholar 

  41. N.G. Semaltianos, S. Logothetidis, N. Frangis, I. Tsiaoussis, W. Perrie, G. Dearden, K.G. Watkins, Chem. Phys. Lett. 496 (1–3), 113–116 (2010).

    Article  CAS  Google Scholar 

  42. A.V. Kabashin, M.J. Meunier, Appl. Phys. 94 (12), 7941–7943 (2003).

    Article  CAS  Google Scholar 

  43. J.P. Sylvestre, A.V. Kabashin, E. Sacher, M. Meunier, J.H. Luong, J. Am. Chem. Soc. 126 (23), 7176–7177 (2004).

    Article  CAS  Google Scholar 

  44. A.V. Simakin, V.V. Voronov, N.A. Kirichenko, G.A. Shafeev, Appl. Phys. A Mater. Sci. Process 79 (4–6), 1127–1132 (2004).

    Article  CAS  Google Scholar 

  45. C. Momma, B.N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, B. Wellegehausen, Opt. Commun. 129 (1–2), 134–142 (1996).

    Article  CAS  Google Scholar 

  46. A. Verma, F. Stellacci, Small 6 (1), 12–21 (2010).

    Article  CAS  Google Scholar 

  47. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Chem. Phys. Lett. 26 (2), 163–166 (1974).J

    Article  CAS  Google Scholar 

  48. F.J. García-Vidal, J.B. Pendrv, Phys. Rev. Lett. 77 (6), 1163–1166 (1996).

    Article  Google Scholar 

  49. H. Yuan, A.M. Fales, C.G. Khoury, J. Liu. and T. Vo-Dinh, Journal of Raman spectroscopy, 44(2). 234–239 (2013).

    Article  CAS  Google Scholar 

  50. G.S. Drummond, A. Kappas, Nearly 20, 217 (1982).

    Google Scholar 

  51. S. Maiti, U. Haupts, W.W. Webb, Proc. Natl. Acad. Sci. 94 (22), 11753–11757 (1997).

    Article  CAS  Google Scholar 

  52. S.D. Standridge, G.C. Schatz, J.T. Hupp, J. Am. Chem. Soc. 131 (24) 8407–8409 (2009).

    Article  CAS  Google Scholar 

  53. H. Choi, W.T. Chen, P.V. Kamat, ACS Nano 6 (5), 4418–4427 (2012).

    Article  CAS  Google Scholar 

  54. M. Grätzel, Inorg. Chem. 44 (20), 6841–6851 (2005).

    Article  CAS  Google Scholar 

  55. K. Kalyanasundaram, M. Graetzel, Curr. Opin. Biotechnology 21 (3), 298–310 (2010).

    Article  CAS  Google Scholar 

  56. B. O’Regan, M. Grätzel, Nature 353 (6346), 737–740 (1991).

    Article  Google Scholar 

  57. R. Jose, V. Thavasi, S. Ramakrishna, J. Am. Cer. Soc. 301, 289–301 (2009).

    Article  CAS  Google Scholar 

  58. P. Nbelayim, G. Kawamura, W. Kian Tan, H. Muto, A. Matsuda, Sci. Rep. 7 (1), 1–12 (2017).

    Article  CAS  Google Scholar 

  59. I. Chung, B. Lee, J. He, R.P.H. Chang, M.G. Kanatzidis, Nature 485 (7399), 486–489 (2012).

    Article  CAS  Google Scholar 

  60. G.W.P. Adhyaksa, S.W. Baek, G.I. Lee, D.K. Lee, J.Y. Lee, J.K. Kang, Chem. Sus. Chem. 7 (9), 2461–2468 (2014).

    Article  CAS  Google Scholar 

  61. N. Valley, N. Greeneltch, R.P. Van Duyne, G.C. Schatz, J. of Phys. Chem. Lett, 4 (16), 2599–2604 (2013).

    Article  CAS  Google Scholar 

  62. J. Gersten, A. Nitzan, J. of Chem. Phys., 73(7), 3023–3037 (1980).

    Article  CAS  Google Scholar 

  63. J.T. Edward, J. Chem. Educ. 47 (4), 261–270 (1970).

    Article  CAS  Google Scholar 

  64. S. Ito, T.N. Murakami, P. Comte, P. Liska, C. Grätzel, M.K. Nazeeruddin, M. Grätzel, Thin Solid Films 516 (14), 4613–4619 (2008).

    Article  CAS  Google Scholar 

  65. T.E. Itina, J. of Phys. Chem. C, 115(12), 5044–5048 (2010).

    Article  CAS  Google Scholar 

  66. P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Parishcha, P.V. Ajaykumar, M. Alam, R. Kumar et al., Nano Lett. 1 (10), 515–519 (2001).

    Article  CAS  Google Scholar 

  67. M. Shateri Khalil-Abad, M. E. Yazdanshenas, M.R. Nateghi, Cellulose 16 (6). 1147–1157 (2009).

    Article  CAS  Google Scholar 

  68. K.E. Lee, M.A. Gomez, S. Elouatik and G.P. Demopoulos, Langmuir 26 (12). 9575–9583 (2010).

    Article  CAS  Google Scholar 

  69. A. Pyatenko, K. Shimokawa, M. Yamaguchi, O. Nishimura, M. Suzuki, Appl Phys. A, 79 (4–6), 803–806, (2004).

    Article  CAS  Google Scholar 

  70. A.S. Nikolov, N.N. Nedyalkov, R.G. Nikov, P.A. Atanasov, M.T. Alexandrov, Appl Surface Science, 257 (12), 5278–5282 (2011).

    Article  CAS  Google Scholar 

  71. Z. Qiu, M. Zhang, D.Y. Wu, S.Y. Ding, Q.Q. Zuo, Y.F. Huang, W. Shen, X.D. Lin, Z.Q. Tian, B.W. Mao. Chem. Phys. Chem. 14 (10), 2217–2224 (2013).

    Article  CAS  Google Scholar 

  72. L. A. Lyon, C.D. Keating, A. P. Fox, B. E. Baker, L. He, S. R. Nicewarner, M. J. Natan, Analytical Chemistry, 70(12), 341–362, (1998).

    Article  Google Scholar 

  73. K. Kneipp, H. Kneipp, H.G. Bohr, Springer, Berlin, Heidelberg, 261–277 (2006).

  74. C.H. Sun, M.L. Wang, Q. Feng, W. Liu, and C.X. Xu, Russian J. of Phys. Chem. A 89 (2), 291–296 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villegas Borrero, N.F., Clemente da Silva Filho, J.M., Ermakov, V.A. et al. Silver nanoparticles produced by laser ablation for a study on the effect of SERS with low laser power on N719 dye and Rhodamine-B. MRS Advances 4, 723–731 (2019). https://doi.org/10.1557/adv.2019.157

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.157

Navigation