Skip to main content
Log in

Multipole Resonances in Transdimensional Lattices of Plasmonic and Silicon Nanoparticles

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Transdimensional photonics has emerged as a new field of science and engineering that explores the optical properties of materials and nanostructures in the translational regime between two and three dimensions. In the present work, we study an example of such transdimensional lattice consisting of nanoparticle array, and we aim at a direct comparison of lattice resonances excited in the periodic lattices of either plasmonic (gold) or silicon nanoparticles of the same size and interparticle spacing. We numerically analyze extinction cross-sections and reflection from the array, and we include electric and magnetic dipoles and electric quadrupoles into consideration. Lattice resonances are excited at the wavelength close to Rayleigh anomaly which is defined by the array periodicity, and different multipoles respond to one or another period of rectangular array depending on incident light polarization. We show that lattice resonances originating from dipole moments are extended to the larger spectral range than electric-quadrupole lattice resonances. Overlap of resonances causes a decrease in reflection (generalized Kerker effect) and, in the case of electric quadrupole and magnetic dipole moments, the coupling of the multipoles is enabled by the lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Novotny, B. Hecht, Principles of Nano-Optics, Cambridge University Press, Cambridge, 2012

    Book  Google Scholar 

  2. E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, Science 302, 419–422 (2003).

    Article  CAS  Google Scholar 

  3. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, B. N. Chichkov, Phys. Rev. B 82(4), 045404 (2010).

    Article  CAS  Google Scholar 

  4. A. B. Evlyukhin, C. Reinhardt, U. Zywietz, B.N. Chichkov, Phys. Rev. B 85(24), 245411 (2012).

    Article  CAS  Google Scholar 

  5. S. V. Zhukovsky, V. E. Babicheva, A. V. Uskov, I. E. Protsenko, and A. V. Lavrinenko, Plasmonics 9, 283 (2014).

    Article  CAS  Google Scholar 

  6. S. V. Zhukovsky, V. E. Babicheva, A. V. Uskov, I. E. Protsenko, and A. V. Lavrinenko, Appl. Phys. A 116, 929 (2014).

    Article  CAS  Google Scholar 

  7. Z. H. Tang, R. W. Peng, Z. Wang, X. Wu, Y. J. Bao, Q. J. Wang, Z. J. Zhang, W. H. Sun, and Mu Wang, Phys. Rev. B 76, 195405 (2007).

    Article  CAS  Google Scholar 

  8. V. E. Babicheva, Y.E. Lozovik, Optical and Quantum Electronics 41, 299–313 (2009).

    Article  CAS  Google Scholar 

  9. D. Li, L. Qin, X. Xiong, R.-W. Peng, Q. Hu, G.-B. Ma, H.-S. Zhou, M. Wang, Opt. Express 19, 22942–22949 (2011).

    Article  CAS  Google Scholar 

  10. J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, M. B. Sinclair, Phys. Rev. Lett. 108, 097402 (2012).

    Article  CAS  Google Scholar 

  11. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, Nano Lett. 12(7), 3749–3755 (2012).

    Article  CAS  Google Scholar 

  12. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, Y. S. Kivshar, Opt. Express 20, 20599 (2012).

    Article  Google Scholar 

  13. U. Zywietz, A.B. Evlyukhin, C. Reinhardt, B.N. Chichkov, Nature Commun. 5, Article #: 3402 (2014).

  14. V. E. Babicheva, M. Petrov, K. Baryshnikova, P. Belov, Journal of the Optical Society of America B 34, D18–D28 (2017).

    Article  CAS  Google Scholar 

  15. A.I. Kuznetsov, A.E. Miroshnichenko, M.L. Brongersma, Y.S. Kivshar, B. Luk’yanchuk, Science 354, aag2472 (2016).

    Article  CAS  Google Scholar 

  16. S. Jahani and Z. Jacob, Nature Nanotechnology 11, 23–36 (2016).

    Article  CAS  Google Scholar 

  17. I. Staude and J. Schilling, Nature Photonics 11, 274–284 (2017).

    Article  CAS  Google Scholar 

  18. C. Wang, Z. Y. Jia, K. Zhang, Y. Zhou, R. H. Fan, X. Xiong, and R. W. Peng, J. Appl. Phys. 115, 244312 (2014).

    Article  CAS  Google Scholar 

  19. V. E. Babicheva, Journal of Optics 19, 124013 (2017).

    Article  CAS  Google Scholar 

  20. V. E. Babicheva, MRS Advances 3, 1913 (2018).

    Article  CAS  Google Scholar 

  21. V. E. Babicheva, “Multipole resonances and directional scattering by hyperbolic-media antennas,” arxiv.org/abs/1706.07259, accessed on January 28, 2019.

  22. A. Boltasseva and V. M. Shalaev, ACS Photonics 6, 1–3 (2019).

    Article  CAS  Google Scholar 

  23. M. Kerker, D. Wang, C. Giles, J. Opt. Soc. Am. 73, 765 (1983).

    Article  Google Scholar 

  24. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, B. Luk’yanchuk, Nat. Commun. 4, 1527 (2013).

    Article  CAS  Google Scholar 

  25. S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, L. Novotny, Nano Lett. 13(4), 1806 (2013).

    Article  CAS  Google Scholar 

  26. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar,. ACS Nano 7, 7824–7832 (2013).

    Article  CAS  Google Scholar 

  27. M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, Y. S. Kivshar, Adv. Opt. Mater. 3, 813–820 (2015).

    Article  CAS  Google Scholar 

  28. V. E. Babicheva and A.B. Evlyukhin, Laser & Photonics Reviews 11, 1700132 (2017).

    Article  CAS  Google Scholar 

  29. V. E. Babicheva and J. Moloney, Nanophotonics 7, 1663–1668 (2018).

    Article  Google Scholar 

  30. A. Pors, S. K. H. Andersen, and S. I. Bozhevolnyi, Opt. Express 23, 28808–28828 (2015).

    Article  CAS  Google Scholar 

  31. R. Alaee, R. Filter, D. Lehr, F. Lederer, and C. Rockstuhl, Opt. Lett. 40, 2645–2648 (2015).

    Article  CAS  Google Scholar 

  32. V. E. Babicheva and A. B. Evlyukhin, ACS Photonics 5, 2022 (2018).

    Article  CAS  Google Scholar 

  33. S. Zou, N. Janel, G. C. Schatz, J. Chem. Phys. 120, 10871 (2004).

    Article  CAS  Google Scholar 

  34. V. A. Markel, J. Phys. B: Atom. Mol. Opt. Phys. 38, L115 (2005).

    Article  CAS  Google Scholar 

  35. V. G. Kravets, F. Schedin, A. N. Grigorenko, Phys. Rev. Lett. 101, 087403 (2008).

    Article  CAS  Google Scholar 

  36. B. Auguie and W.L. Barnes, Phys. Rev. Lett. 101, 143902 (2008).

    Article  CAS  Google Scholar 

  37. V. G. Kravets, A. V. Kabashin, W. L. Barnes, A. N. Grigorenko, Chem. Rev. 118, 5912 (2018).

    Article  CAS  Google Scholar 

  38. W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. Gómez Rivas, T. W. Odom, Mater. Today 21, 303 (2018).

    Article  Google Scholar 

  39. V. E. Babicheva and A.B. Evlyukhin, MRS Communications 8, 712–717 (2018).

    Article  CAS  Google Scholar 

  40. V. E. Babicheva and J. Moloney, Laser & Photonics Reviews 12, 1800267 (2019).

    Article  CAS  Google Scholar 

  41. C. Y. Yang, J. H. Yang, Z. Y. Yang, Z. X. Zhou, M. G. Sun, V. E. Babicheva, K. P. Chen, ACS Photonics 5, 2596 (2018).

    Article  CAS  Google Scholar 

  42. V. E. Babicheva, MRS Communications 8, 1455–1462 (2018).

    Article  CAS  Google Scholar 

  43. V. E. Babicheva, MRS Advances 3, 2783–2788 (2018).

    Article  CAS  Google Scholar 

  44. A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Science 339, 1232009 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktoriia E. Babicheva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babicheva, V.E. Multipole Resonances in Transdimensional Lattices of Plasmonic and Silicon Nanoparticles. MRS Advances 4, 713–722 (2019). https://doi.org/10.1557/adv.2019.152

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.152

Navigation