Abstract
Transdimensional photonics has emerged as a new field of science and engineering that explores the optical properties of materials and nanostructures in the translational regime between two and three dimensions. In the present work, we study an example of such transdimensional lattice consisting of nanoparticle array, and we aim at a direct comparison of lattice resonances excited in the periodic lattices of either plasmonic (gold) or silicon nanoparticles of the same size and interparticle spacing. We numerically analyze extinction cross-sections and reflection from the array, and we include electric and magnetic dipoles and electric quadrupoles into consideration. Lattice resonances are excited at the wavelength close to Rayleigh anomaly which is defined by the array periodicity, and different multipoles respond to one or another period of rectangular array depending on incident light polarization. We show that lattice resonances originating from dipole moments are extended to the larger spectral range than electric-quadrupole lattice resonances. Overlap of resonances causes a decrease in reflection (generalized Kerker effect) and, in the case of electric quadrupole and magnetic dipole moments, the coupling of the multipoles is enabled by the lattice.
Similar content being viewed by others
References
L. Novotny, B. Hecht, Principles of Nano-Optics, Cambridge University Press, Cambridge, 2012
E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, Science 302, 419–422 (2003).
A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, B. N. Chichkov, Phys. Rev. B 82(4), 045404 (2010).
A. B. Evlyukhin, C. Reinhardt, U. Zywietz, B.N. Chichkov, Phys. Rev. B 85(24), 245411 (2012).
S. V. Zhukovsky, V. E. Babicheva, A. V. Uskov, I. E. Protsenko, and A. V. Lavrinenko, Plasmonics 9, 283 (2014).
S. V. Zhukovsky, V. E. Babicheva, A. V. Uskov, I. E. Protsenko, and A. V. Lavrinenko, Appl. Phys. A 116, 929 (2014).
Z. H. Tang, R. W. Peng, Z. Wang, X. Wu, Y. J. Bao, Q. J. Wang, Z. J. Zhang, W. H. Sun, and Mu Wang, Phys. Rev. B 76, 195405 (2007).
V. E. Babicheva, Y.E. Lozovik, Optical and Quantum Electronics 41, 299–313 (2009).
D. Li, L. Qin, X. Xiong, R.-W. Peng, Q. Hu, G.-B. Ma, H.-S. Zhou, M. Wang, Opt. Express 19, 22942–22949 (2011).
J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, M. B. Sinclair, Phys. Rev. Lett. 108, 097402 (2012).
A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, Nano Lett. 12(7), 3749–3755 (2012).
A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, Y. S. Kivshar, Opt. Express 20, 20599 (2012).
U. Zywietz, A.B. Evlyukhin, C. Reinhardt, B.N. Chichkov, Nature Commun. 5, Article #: 3402 (2014).
V. E. Babicheva, M. Petrov, K. Baryshnikova, P. Belov, Journal of the Optical Society of America B 34, D18–D28 (2017).
A.I. Kuznetsov, A.E. Miroshnichenko, M.L. Brongersma, Y.S. Kivshar, B. Luk’yanchuk, Science 354, aag2472 (2016).
S. Jahani and Z. Jacob, Nature Nanotechnology 11, 23–36 (2016).
I. Staude and J. Schilling, Nature Photonics 11, 274–284 (2017).
C. Wang, Z. Y. Jia, K. Zhang, Y. Zhou, R. H. Fan, X. Xiong, and R. W. Peng, J. Appl. Phys. 115, 244312 (2014).
V. E. Babicheva, Journal of Optics 19, 124013 (2017).
V. E. Babicheva, MRS Advances 3, 1913 (2018).
V. E. Babicheva, “Multipole resonances and directional scattering by hyperbolic-media antennas,” arxiv.org/abs/1706.07259, accessed on January 28, 2019.
A. Boltasseva and V. M. Shalaev, ACS Photonics 6, 1–3 (2019).
M. Kerker, D. Wang, C. Giles, J. Opt. Soc. Am. 73, 765 (1983).
Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, B. Luk’yanchuk, Nat. Commun. 4, 1527 (2013).
S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, L. Novotny, Nano Lett. 13(4), 1806 (2013).
I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar,. ACS Nano 7, 7824–7832 (2013).
M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, Y. S. Kivshar, Adv. Opt. Mater. 3, 813–820 (2015).
V. E. Babicheva and A.B. Evlyukhin, Laser & Photonics Reviews 11, 1700132 (2017).
V. E. Babicheva and J. Moloney, Nanophotonics 7, 1663–1668 (2018).
A. Pors, S. K. H. Andersen, and S. I. Bozhevolnyi, Opt. Express 23, 28808–28828 (2015).
R. Alaee, R. Filter, D. Lehr, F. Lederer, and C. Rockstuhl, Opt. Lett. 40, 2645–2648 (2015).
V. E. Babicheva and A. B. Evlyukhin, ACS Photonics 5, 2022 (2018).
S. Zou, N. Janel, G. C. Schatz, J. Chem. Phys. 120, 10871 (2004).
V. A. Markel, J. Phys. B: Atom. Mol. Opt. Phys. 38, L115 (2005).
V. G. Kravets, F. Schedin, A. N. Grigorenko, Phys. Rev. Lett. 101, 087403 (2008).
B. Auguie and W.L. Barnes, Phys. Rev. Lett. 101, 143902 (2008).
V. G. Kravets, A. V. Kabashin, W. L. Barnes, A. N. Grigorenko, Chem. Rev. 118, 5912 (2018).
W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. Gómez Rivas, T. W. Odom, Mater. Today 21, 303 (2018).
V. E. Babicheva and A.B. Evlyukhin, MRS Communications 8, 712–717 (2018).
V. E. Babicheva and J. Moloney, Laser & Photonics Reviews 12, 1800267 (2019).
C. Y. Yang, J. H. Yang, Z. Y. Yang, Z. X. Zhou, M. G. Sun, V. E. Babicheva, K. P. Chen, ACS Photonics 5, 2596 (2018).
V. E. Babicheva, MRS Communications 8, 1455–1462 (2018).
V. E. Babicheva, MRS Advances 3, 2783–2788 (2018).
A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Science 339, 1232009 (2013).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Babicheva, V.E. Multipole Resonances in Transdimensional Lattices of Plasmonic and Silicon Nanoparticles. MRS Advances 4, 713–722 (2019). https://doi.org/10.1557/adv.2019.152
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2019.152