Skip to main content
Log in

Photonic upconversion in solution-processed Gd-based thin films for delayed quantum efficiency roll-off in a-Si flat panel image detectors

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Amorphous Si (a-Si) is used for fabrication of commercial low-cost flat panel image detectors for radiographic applications such as computed tomography (CT) imaging. a-Si photodiodes are known to exhibit a rapid decrease in quantum efficiency near 750nm. While crystalline Si does not suffer from such an early decline, the large-area and low-cost constraints of medical imagers make it challenging and costly to use crystalline Si for such devices. In this work, we report on the development of a sensitive layer for upconversion from 785 nm to green region of the spectrum, which nearly matches the peak quantum efficiency of a-Si detectors. Various host materials have been extensively studied in literature with rare earth ions such as Er3+(emission: green+red), Tm3+(emission: blue), Ho3+(emission: red+green) along with Yb3+ as a sensitizer for upconversion to the visible regime at high incident optical power (∼100 mW) for colloidal solutions. We carried out a thermal decomposition synthesis of NaYF4: Yb(18%), Er(2%), Gd(15%) at moderate temperature (∼320°C), resulting in a nearly pure hexagonal phase material. This is confirmed by powder X-ray diffraction (PXRD) of the unannealed sample with a lattice constant (∼5.17 Å). High-resolution transmission electron microscopy (HRTEM) measurements reveal the formation of nearly spherical nanoparticles. The observed plane ([100]) inferred from lattice fringes in TEM data with a visibly estimated interplanar distance (4.4±1.6 Å) is in reasonable agreement with standard data (∼5.17 Å) for comparable NaYF4-based materials. Excitation (785 nm) of the deposited thin films of Gd-doped unannealed material at relatively low incident power (∼0.4 mW) exhibits a PL response in green (539 nm) and red (665 nm) region of the spectrum. Gd-based upconversion material based thin films are thus a feasible photonic material for potential effective extension of high quantum efficiency range in a-Si for flat panel image detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.E. Antonuk, Radiographics 15, 993 (1995).

    Article  CAS  Google Scholar 

  2. N. Wyrsch and C. Ballif, Semicond. Sci. Technol. 31, 103005 (2016).

    Article  Google Scholar 

  3. R. Venkatachalam, in Asia-Pac. Conf. (Auckland, New Zealand, 2006), p. 5.

  4. D. Parlevliet and N.R. Moheimani, Aquat. Biosyst. 10, 4 (2014).

    Article  Google Scholar 

  5. S. Gardelis and A.G. Nassiopoulou, Appl. Phys. Lett. 104, 183902 (2014).

    Article  Google Scholar 

  6. J. Bergmann, M. Heusinger, G. Andrä, and F. Falk, Opt. Express 20, A856 (2012).

    Article  Google Scholar 

  7. A. Rogalski, Prog. Quantum Electron. 27, 59 (2003).

    Article  CAS  Google Scholar 

  8. W. Zhao, G. Ristic, and J.A. Rowlands, Med. Phys. 31, 2594 (2004).

    Article  CAS  Google Scholar 

  9. J.A. Seibert, Pediatr. Radiol. 36, 173 (2006).

    Article  Google Scholar 

  10. F. Auzel, Chem. Rev. 104, 139 (2004).

    Article  CAS  Google Scholar 

  11. F. Wang and X. Liu, Chem. Soc. Rev. 38, 976 (2009).

    Article  CAS  Google Scholar 

  12. P.R. Selvin, IEEE J. Sel. Top. Quantum Electron. 2, (1996).

  13. G. Chen, T.Y. Ohulchanskyy, R. Kumar, H. Ågren, and P.N. Prasad, ACS Nano 4, 3163 (2010).

    Article  CAS  Google Scholar 

  14. L. Wang and Y. Li, Chem. Commun. 0, 2557 (2006).

    Article  Google Scholar 

  15. W. Gao, H. Zheng, Q. Han, E. He, and R. Wang, CrystEngComm 16, 6697 (2014).

    Article  CAS  Google Scholar 

  16. L.M. Jin, X. Chen, C.K. Siu, F. Wang, and S.F. Yu, ACS Nano 11, 843 (2017).

    Article  CAS  Google Scholar 

  17. Z. Li and Y. Zhang, Nanotechnology 19, 345606 (2008).

    Article  Google Scholar 

  18. H.-Q. Wang and T. Nann, ACS Nano 3, 3804 (2009).

    Article  CAS  Google Scholar 

  19. F. Wang, Y. Han, C.S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, and X. Liu, Nature 463, 1061 (2010).

    Article  CAS  Google Scholar 

  20. V. Singh, V. Kumar Rai, and M. Haase, J. Appl. Phys. 112, 063105 (2012).

    Article  Google Scholar 

  21. G. Arnaoutakis, J. Marques-Hueso, A. Ivaturi, S. Fischer, J.C. Goldschmidt, K. Krämer, and B. Richards, Sol. Energy Mater. Sol. Cells 140, 217 (2015).

    Article  CAS  Google Scholar 

  22. A.K. Okyay, A.M. Nayfeh, K.C. Saraswat, N. Ozguven, A. Marshall, P.C. McIntyre, and T. Yonehara, in LEOS 2006 — 19th Annu. Meet. IEEE Lasers Electro-Opt. Soc. (2006), pp. 460–461.

  23. S.A. Paleki A., EJVES Short Rep. 32, 1 (2016).

    Article  Google Scholar 

  24. V.C. Coffey, Opt. Photonics News 22, 26 (2011).

    Article  CAS  Google Scholar 

  25. A. Lay, D.S. Wang, M.D. Wisser, R.D. Mehlenbacher, Y. Lin, M.B. Goodman, W.L. Mao, and J.A. Dionne, Nano Lett. 17, 4172 (2017).

    Article  CAS  Google Scholar 

  26. N. Dua, S. Saha, M. Mehra, and M. Singh, in Nanophotonic Mater. XV (International Society for Optics and Photonics, 2018), p. 1072003.

  27. R. Kumar, M. Nyk, T.Y. Ohulchanskyy, C.A. Flask, and P.N. Prasad, Adv. Funct. Mater. 19, 853 (2009).

    Article  CAS  Google Scholar 

  28. H. Xing, W. Bu, S. Zhang, X. Zheng, M. Li, F. Chen, Q. He, L. Zhou, W. Peng, Y. Hua, and J. Shi, Biomaterials 33, 1079 (2012).

    Article  CAS  Google Scholar 

  29. Nunez Nuria O., Miguez Hernan, Quintanilla Marta, Cantelar Eugenio, Cusso Fernando, and Ocana Manuel, Eur. J. Inorg. Chem. 2008, 4517 (2008).

    Google Scholar 

  30. J. Ouyang, D. Yin, X. Cao, C. Wang, K. Song, B. Liu, L. Zhang, Y. Han and M. Wu, Dalton Trans. 43, 14001 (2014).

    Article  CAS  Google Scholar 

  31. Y. Wu, S. Lin, W. Shao, X. Zhang, J. Xu, L. Yu and K. Chen, RSC Adv. 6, 102869 (2016).

    Article  CAS  Google Scholar 

  32. B. Dong, H. Song, H. Yu, H. Zhang, R. Qin, X. Bai, G. Pan, S. Lu, F. Wang, L. Fan, and Q. Dai, J. Phys. Chem. C 112, 1435 (2008).

    Article  CAS  Google Scholar 

  33. K. Marble, Z. Coker, V. Yakovlev, in 2018 Joint Spring Meeting of the Texas Sections of APS, AAPT, and Zone 13 of the SPS (Bulletin of the American Physical Society 63.

  34. S. Battiato, P. Rossi, P. Paoli, G. Malandrino, Inorg. Chem. 57, 15035 (2018).

    Article  CAS  Google Scholar 

  35. Y.Y. Cheng, A. Nattestad T.F. Schulze, R.W. MacQueen, B. Fuckel, K. Lips, G.G. Wallace, T. Khoury, M.J. Crossley, T.W. Schmidt, Chem. Sci. 7, 559 (2016).

    Article  CAS  Google Scholar 

  36. H. Jia, C. Xu, J. Wang, P. Chen, X. Liu, J. Qiu, CrystEngComm 16, 4023 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dua, N., Saha, S. & Singh, M. Photonic upconversion in solution-processed Gd-based thin films for delayed quantum efficiency roll-off in a-Si flat panel image detectors. MRS Advances 4, 705–712 (2019). https://doi.org/10.1557/adv.2019.149

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.149

Navigation