Abstract
The recent discovery of ferroelectric behavior in doped hafnia-based dielectrics, attributed to a non-centrosymmetric orthorhombic phase, has potential for use in attractive applications such as negative differential capacitance field-effect-transistors (NCFET) and ferroelectric random access memory devices (FeRAM). Alloying with similar oxides like ZrO2, doping with specific elements such as Si, novel processing methods, encapsulation and annealing schemes are also some of the techniques that are being explored to target structural modifications and stabilization of the non-centrosymmetric phase. In this study, we utilized synchrotron-based x-ray diffraction in the grazing incidence in plane geometry (GIIXRD) to determine the crystalline phases in hafnia-zirconia (HZO) compositional alloys deposited by atomic layer deposition (ALD). Here we compare and contrast the structural phases and ferroelectric properties of mechanically confined HZO films in metal-insulator-metal (MIM) and metal-insulator-semiconductor (MIS) structures. Both MIM and MIS structures reveals a host of reflections due to non-monoclinic phases in the d-spacing region between 1.75Å to 4Å. The non-monoclinic phases are believed to consist of tetragonal and orthorhombic phases. Compared to the MIS structures a suppression of the monoclinic phase in MIM structures with 50% zirconia or less was observed. The correlation of the electrical properties with the structural analysis obtained by GIIXRD highlights the importance of understanding the effects of the underlying substrate (metal vs. Si) for different target applications.
Similar content being viewed by others
References
T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, Appl. Phys. Lett. 99, 10 (2011).
[2]T. Mikolajick, S. Slesazeck, M. Park, and U. Schroeder, MRS Bulletin, 43, 340–346 (2018).
M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, J. Müller, A. Kersch, U. Schroeder, T. Mikolajick, and C. S. Hwang, , Adv. Mater., 27, 1811–1831 (2015).
M. Jerry, P. Y. Chen, J. Zhang, P. Sharma, K. Ni, S. Yu, and S. Datta in Electron Devices Meeting (IEDM), (IEEE International Electron Device Meeting (IEDM) San Francisco, CA, 2017) pp. 6.2.1–6.2.4.
A. Aziz, E. T. Breyer, A. Chen, X. Chen, S. Datta, S. K. Gupta, M. Hoffmann, X. S. Hu, A. Ionescu, M. Jerry, and T. Mikolajick in Design, Automation & Test in Europe Conference & Exhibition (DATE, IEEE, 2018) pp. 1289–1298.
T. Mittmann, F. P. G. Fengler, C. Richter, M. H. Park, T. Mikolajick, and U. Schroeder, Microelectronic Engineering, 178, 48–51 (2017).
A. Chernikova, M. Kozodaev, A. Markeev, D. Negrov, M. Spiridonov, S. Zarubin, O. Bak, P. Buragohain, H. Lu, E. Suvorova, and A. Gruverman, ACS Appl. Matl. & Interf., 8, 7232–7237 (2016).
J. Wang, H. P. Li, and R. Stevens, J. Matl. Sci. 27, 5397–5430 (1992).
O. Ohtaka, H. Fukui, T. Kunisada, T. Fujisawa, K. Funakoshi, W. Utsumi, T. Irifune, K. Kuroda, and T. Kikegawa, J. Am. Ceram. Soc. 84, 1369–1373 (2001).
X. Sang, E. D. Grimley, T. Schenk, U. Schroeder, and J. M. LeBeau, Appl. Phys. Lett. 106, 162905 (2015).
L. Xu, T. Nishimura, S. Shibayama, T. Yajima, S Migita, and A. Toriumi, J. Appl. Phys, 122, 124104 (2017).
[12]M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, Y. H. Lee, S. D. Hyun, and C. S. Hwang, J. Mater. Chem. C 3, 6291–6300 (2015).
[13]H. J. Kim, M. H. Park, Y. J. Kim, Y. H. Lee, T. Moon, K. D. Kim, S. D. Hyun, and C. S. Hwang, Nanoscale 8, 1383–1389 (2016).
M. H. Park, H. J. Kim, Y. J. Kim, W. Lee, T. Moon, K. D. Kim, and C. S. Hwang, Appl. Phys. Lett. 105, 072902 (2014).
S. Dey, K. Tapily, S. Consiglio, R. D. Clark, C. S. Wajda, G. J. Leusink, A. R. Woll, P. Sharma, S. Dutta, and A. C. Diebold in International Conference on Frontiers of Characterization and Metrology for Nanoelectronics, edited by E. M. Secula and D. G. Seiler, (Frontiers of Characterization and Metrology for Nanoelectronics (FCMN) 2017) pp. 223–225.
E. H. Kisi, C. J. Howard, and R. J. Hil, J. Am. Ceram. Soc. 72, 1757 (1989) - SG 29- Pbc21-ICSD CollCode 67004.
R. E. Hann, P. R. Suitch, J. and L. Pentecost, J. Am. Ceram. Soc. 68, 285 (1985) - SG 14 - P21/c - ICSD CollCode 173964.
O. Ohtaka, T. Yamanaka, and S. Kume, Nippon Seramikkusu Kyokai Gakujustsu Ronbunchi, 99, 826 (1991) - SG 61 - Pbca - ICSD CollCode 173965.
J. Kang, E. C. Lee, and K. J. Chang, Phys. Rev. B, 68, 054106 (2003) - SG 62 - Pnma - ICSD Coll Code 173963.
Curtis et al. J. Am. Ceram. Soc. 37, 458 (1954) - SG 137- P42/nmc -ICSD CollCode 85322.
A. A. Demkov, Phys. Stat. Sol. (b), 226, 57 (2001) - SG 137- P42/nmc -ICSD CollCode 85322.
[22]W. Wong-Ng, H. F. McMurdie, B. Paretzkin, Y Zhang, K. L. Davis, C. Hubbard, A. L. Dragoo, and J. M. Stewart, Powder Diffraction 2, 191 (1987) - Fm3m- SG 225- ICSD CollCode 604220.
S. Dey, K. Tapily, S. Consiglio, R. D. Clark, C. S. Wajda, G. J. Leusink, A. R. Woll, and A. C. Diebold, J. Appl. Phys. 120, 125304 (2016).
T. D. Huan, V. Sharma, G. A. Rossetti, and R. Ramprasad, Phys. Rev. B, 90, 064111 (2014).
J. Müller, T. S. Böscke, D. Bräuhaus, U. Schröder, J. Kücher, T. Mikolajick, and L. Frey, Appl. Phys. Lett., 99, 112901 (2011).
J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Bottger, L. Frey, and T. Mikolajick, Nano Lett. 12, 4318–4323 (2012).
S. E. Reyes-Lillo, K. F. Garrity, and K. M. Rabe, Phys. Rev. B, 90, 140103 (2014).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mukundan, V., Beckmann, K., Tapily, K. et al. Structural Correlation of Ferroelectric Behavior in Mixed Hafnia-Zirconia High-k Dielectrics for FeRAM and NCFET Applications. MRS Advances 4, 545–551 (2019). https://doi.org/10.1557/adv.2019.148
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2019.148