Skip to main content
Log in

Solution-Processed Cubic GaN for Potential Lighting Applications

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Cubic gallium nitride (GaN) is a wide bandgap semiconductor that exhibits a high crystallographic symmetry resulting in a lower inbuilt polarization which is useful for more efficient phosphor-free green light-emitting diodes. It has been grown using molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD), which produce highly ordered thin films on compatible substrates. In this work, we report the chemical synthesis of GaN using chemical metathesis reaction in diethyl ether with lithium nitride and anhydrous gallium chloride as precursors, inside a nitrogen glove box at the room temperature. The resulting product was subsequently washed to remove lithium chloride and dried before vacuum annealing in a furnace at 850°C. Powder X-ray diffraction (XRD) scans of the as-prepared and annealed product reveal a mixed phase of GaN along with Ga2O3. Energy dispersive X-ray spectroscopy (EDAX) measurements show a nitrogen-poor product, which correlates well with the nearly black color of the powder. Diffuse reflectance spectroscopy (DRS) measurements were carried out with the obtained product on a barium sulfate substrate in a Perkin-Elmer Lambda 1050-UV-Vis-NIR spectrophotometer showing a strong absorbance below 400 nm. The energy band gap is bounded by values extracted from the Tauc plot and DRS measurements in the range of 3.2-3.5 eV, which is in good agreement with the known excitonic bandgap of cubic GaN (∼ 3.3 eV). Initial photoluminescence (PL) measurements using a Perkin-Elmer LS-55 spectrophotometer with an excitation wavelength of 310 nm reveal a weak emission centered around 440 nm corresponding to the known defect centers (D0X) in GaN. Further development of this process to form inks is expected to provide an alternate pathway to producing flexible phosphor-free lighting devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Flack, B. N. Pushpakaran, and S. B. Bayne, Journal of Elec Materi 45, 2673 (2016).

    Article  CAS  Google Scholar 

  2. G. Li, W. Wang, W. Yang, Y. Lin, H. Wang, Z. Lin, and S. Zhou, Rep. Prog. Phys. 79, 056501 (2016).

    Article  Google Scholar 

  3. C. X. Ren, Materials Science and Technology 32, 418 (2016).

    CAS  Google Scholar 

  4. C. Bayram and R. Liu, Proc SPIE Int Soc Opt Eng 10111, (2017).

  5. O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, Journal of Applied Physics 85, 3222 (1999).

    Article  CAS  Google Scholar 

  6. M. Singh, J. Singh, and U. K. Mishra, MRS Online Proceedings Library Archive 798, (2003).

  7. M. Singh and J. Singh, Journal of Applied Physics 94, 2498 (2003).

    Article  CAS  Google Scholar 

  8. M. Singh and J. Singh, MRS Online Proceedings Library Archive 693, (2001).

  9. M. Singh, J. Singh, and U. Mishra, in APS March Meeting (AIP Publishing, Indianapolis, IN, 2002), p. Q19.012.

    Google Scholar 

  10. H. Jeong, H. J. Jeong, H. M. Oh, C.-H. Hong, E.-K. Suh, G. Lerondel, and M. S. Jeong, Scientific Reports 5, 9373 (2015).

    Article  CAS  Google Scholar 

  11. M. Auf der Maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. Di Carlo, Phys. Rev. Lett. 116, 027401 (2016).

    Article  Google Scholar 

  12. N. Dua, S. Saha, M. Mehra, and M. Singh, in Nanophotonic Materials XV (International Society for Optics and Photonics, 2018), p. 1072003.

    Google Scholar 

  13. S. I. Cho, K. Chang, and M. S. Kwon, J Mater Sci 42, 3569 (2007).

    Article  CAS  Google Scholar 

  14. Y. Dai, Y. Shao, Y. Wu, X. Hao, P. Zhang, X. Cao, L. Zhang, Y. Tian, and H. Zhang, RSC Advances 4, 21504 (2014).

    Article  CAS  Google Scholar 

  15. W. Wang, H. Wang, W. Yang, Y. Zhu, and G. Li, Scientific Reports 6, 24448 (2016).

    Article  CAS  Google Scholar 

  16. R. F. Davis, A.M. Roskowski, E. A. Preble, J. S. Speck, B. Heying, J. A. Freitas, E. R. Glaser, and W. E. Carlos, Proceedings of the IEEE 90, 993 (2002).

    Article  CAS  Google Scholar 

  17. Y. Oshima, T. Eri, M. Shibata, H. Sunakawa, K. Kobayashi, T. Ichihashi, and A. Usui, Jpn. J. Appl. Phys. 42, L1 (2003).

    Article  CAS  Google Scholar 

  18. J. A. Rogers, P. M. Ferreira, and R. Saeidpourazar, US9555644B2 (31 January 2017).

  19. J. Yoon, S.-M. Lee, D. Kang, M. A. Meitl, C. A. Bower, and J. A. Rogers, Advanced Optical Materials 3, 1313 (2015).

    Article  CAS  Google Scholar 

  20. A. J. Trindade, B. Guilhabert, E. Y. Xie, R. Ferreira, J. J. D. McKendry, D. Zhu, N. Laurand, E. Gu, D. J. Wallis, I. M. Watson, C. J. Humphreys, and M. D. Dawson, Opt. Express, OE 23, 9329 (2015).

    Article  CAS  Google Scholar 

  21. R. Lerner, S. Eisenbrandt, F. Fischer, A. Fecioru, A.J. Trindade, S. Bonafede, C. Bower, P. Waltereit, R. Reiner, and H. Czap, Physica Status Solidi (A) 215, 1700556 (2018).

    Article  Google Scholar 

  22. K. E. Waldrip, J. Y. Tsao, and T. M. Kerley, US7435297B1 (14 October 2008).

  23. Y. Tian, Y. Shao, Y. Wu, X. Hao, L. Zhang, Y. Dai, and Q. Huo, Sci Rep 5, (2015).

  24. M. Seacrist, High Quality, Low Cost Bulk Gallium Nitride Substrates Grown by the Electrochemical Solution Growth Method (SunEdison Inc., St. Peters, MO, 2017).

    Book  Google Scholar 

  25. S. V. Novikov and C. T. Foxon, Journal of Crystal Growth 354, 44 (2012).

    Article  CAS  Google Scholar 

  26. H. Parala, A. Devi, A. Wohlfart, M. Winter, and R. A. Fischer, Advanced Functional Materials 11, 224 (2001).

    Article  CAS  Google Scholar 

  27. M. Puchinger, T. Wagner, D. Rodewald, J. Bill, F. Aldinger, and F. F. Lange, Journal of Crystal Growth 208, 153 (2000).

    Article  CAS  Google Scholar 

  28. C. H. Wallace, S.-H. Kim, G. A. Rose, L. Rao, J. R. Heath, M. Nicol, and R. B. Kaner, Appl. Phys. Lett. 72, 596 (1998).

    Article  CAS  Google Scholar 

  29. G. Pan, M. E. Kordesch, and P. G. Van Patten, Chem. Mater. 18, 5392 (2006).

    Article  CAS  Google Scholar 

  30. P. G. V. Patten and G. Pan, US7641880B2 (5 January 2010).

  31. R. S. Deol, H. W. Choi, M. Singh, and G. E. Jabbour, IEEE Sensors Journal 15, 3186 (2015).

    Article  Google Scholar 

  32. H. W. Choi, T. Zhou, M. Singh, and G. E. Jabbour, Nanoscale 7, 3338 (2015).

    Article  CAS  Google Scholar 

  33. P. Kubelka and F. Munk, Zeitschrift Fur Technische Physik 12, 593 (1931).

    Google Scholar 

  34. A. P. Purdy, Chem. Mater. 11, 1648 (1999).

    Article  CAS  Google Scholar 

  35. B. J. Wood and R. G. J. Strens, Mineralogical Magazine 43, 509 (1979).

    Article  CAS  Google Scholar 

  36. M. Feneberg, M. Röppischer, C. Cobet, N. Esser, J. Schörmann, T. Schupp, D. J. As, F. Hörich, J. Bläsing, A. Krost, and R. Goldhahn, Phys. Rev. B 85, 155207 (2012).

    Article  Google Scholar 

  37. M. A. Reshchikov and H. Morkoç, Journal of Applied Physics 97, 061301 (2005).

    Article  Google Scholar 

  38. M. Segal, C. Mulder, K. Celebi, M. Singh, K. Rivoire, S. Difley, T. Van Voorhis, and M. A. Baldo, in Proc. SPIE (2008), pp. 699912-699912–17.

    Google Scholar 

  39. M. Singh, H. S. Chae, J. D. Froehlich, T. Kondou, S. Li, A. Mochizuki, and G. Jabbour, MRS Online Proceedings Library 1197, (2009).

  40. V. Ganesh, S. Suresh, M. Balaji, and K. Baskar, Journal of Alloys and Compounds 498, 52 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, A.K., Yadav, S., Mehra, M. et al. Solution-Processed Cubic GaN for Potential Lighting Applications. MRS Advances 4, 567–574 (2019). https://doi.org/10.1557/adv.2019.105

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.105

Navigation