Abstract
Cubic gallium nitride (GaN) is a wide bandgap semiconductor that exhibits a high crystallographic symmetry resulting in a lower inbuilt polarization which is useful for more efficient phosphor-free green light-emitting diodes. It has been grown using molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD), which produce highly ordered thin films on compatible substrates. In this work, we report the chemical synthesis of GaN using chemical metathesis reaction in diethyl ether with lithium nitride and anhydrous gallium chloride as precursors, inside a nitrogen glove box at the room temperature. The resulting product was subsequently washed to remove lithium chloride and dried before vacuum annealing in a furnace at 850°C. Powder X-ray diffraction (XRD) scans of the as-prepared and annealed product reveal a mixed phase of GaN along with Ga2O3. Energy dispersive X-ray spectroscopy (EDAX) measurements show a nitrogen-poor product, which correlates well with the nearly black color of the powder. Diffuse reflectance spectroscopy (DRS) measurements were carried out with the obtained product on a barium sulfate substrate in a Perkin-Elmer Lambda 1050-UV-Vis-NIR spectrophotometer showing a strong absorbance below 400 nm. The energy band gap is bounded by values extracted from the Tauc plot and DRS measurements in the range of 3.2-3.5 eV, which is in good agreement with the known excitonic bandgap of cubic GaN (∼ 3.3 eV). Initial photoluminescence (PL) measurements using a Perkin-Elmer LS-55 spectrophotometer with an excitation wavelength of 310 nm reveal a weak emission centered around 440 nm corresponding to the known defect centers (D0X) in GaN. Further development of this process to form inks is expected to provide an alternate pathway to producing flexible phosphor-free lighting devices.
Similar content being viewed by others
References
T. J. Flack, B. N. Pushpakaran, and S. B. Bayne, Journal of Elec Materi 45, 2673 (2016).
G. Li, W. Wang, W. Yang, Y. Lin, H. Wang, Z. Lin, and S. Zhou, Rep. Prog. Phys. 79, 056501 (2016).
C. X. Ren, Materials Science and Technology 32, 418 (2016).
C. Bayram and R. Liu, Proc SPIE Int Soc Opt Eng 10111, (2017).
O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, Journal of Applied Physics 85, 3222 (1999).
M. Singh, J. Singh, and U. K. Mishra, MRS Online Proceedings Library Archive 798, (2003).
M. Singh and J. Singh, Journal of Applied Physics 94, 2498 (2003).
M. Singh and J. Singh, MRS Online Proceedings Library Archive 693, (2001).
M. Singh, J. Singh, and U. Mishra, in APS March Meeting (AIP Publishing, Indianapolis, IN, 2002), p. Q19.012.
H. Jeong, H. J. Jeong, H. M. Oh, C.-H. Hong, E.-K. Suh, G. Lerondel, and M. S. Jeong, Scientific Reports 5, 9373 (2015).
M. Auf der Maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. Di Carlo, Phys. Rev. Lett. 116, 027401 (2016).
N. Dua, S. Saha, M. Mehra, and M. Singh, in Nanophotonic Materials XV (International Society for Optics and Photonics, 2018), p. 1072003.
S. I. Cho, K. Chang, and M. S. Kwon, J Mater Sci 42, 3569 (2007).
Y. Dai, Y. Shao, Y. Wu, X. Hao, P. Zhang, X. Cao, L. Zhang, Y. Tian, and H. Zhang, RSC Advances 4, 21504 (2014).
W. Wang, H. Wang, W. Yang, Y. Zhu, and G. Li, Scientific Reports 6, 24448 (2016).
R. F. Davis, A.M. Roskowski, E. A. Preble, J. S. Speck, B. Heying, J. A. Freitas, E. R. Glaser, and W. E. Carlos, Proceedings of the IEEE 90, 993 (2002).
Y. Oshima, T. Eri, M. Shibata, H. Sunakawa, K. Kobayashi, T. Ichihashi, and A. Usui, Jpn. J. Appl. Phys. 42, L1 (2003).
J. A. Rogers, P. M. Ferreira, and R. Saeidpourazar, US9555644B2 (31 January 2017).
J. Yoon, S.-M. Lee, D. Kang, M. A. Meitl, C. A. Bower, and J. A. Rogers, Advanced Optical Materials 3, 1313 (2015).
A. J. Trindade, B. Guilhabert, E. Y. Xie, R. Ferreira, J. J. D. McKendry, D. Zhu, N. Laurand, E. Gu, D. J. Wallis, I. M. Watson, C. J. Humphreys, and M. D. Dawson, Opt. Express, OE 23, 9329 (2015).
R. Lerner, S. Eisenbrandt, F. Fischer, A. Fecioru, A.J. Trindade, S. Bonafede, C. Bower, P. Waltereit, R. Reiner, and H. Czap, Physica Status Solidi (A) 215, 1700556 (2018).
K. E. Waldrip, J. Y. Tsao, and T. M. Kerley, US7435297B1 (14 October 2008).
Y. Tian, Y. Shao, Y. Wu, X. Hao, L. Zhang, Y. Dai, and Q. Huo, Sci Rep 5, (2015).
M. Seacrist, High Quality, Low Cost Bulk Gallium Nitride Substrates Grown by the Electrochemical Solution Growth Method (SunEdison Inc., St. Peters, MO, 2017).
S. V. Novikov and C. T. Foxon, Journal of Crystal Growth 354, 44 (2012).
H. Parala, A. Devi, A. Wohlfart, M. Winter, and R. A. Fischer, Advanced Functional Materials 11, 224 (2001).
M. Puchinger, T. Wagner, D. Rodewald, J. Bill, F. Aldinger, and F. F. Lange, Journal of Crystal Growth 208, 153 (2000).
C. H. Wallace, S.-H. Kim, G. A. Rose, L. Rao, J. R. Heath, M. Nicol, and R. B. Kaner, Appl. Phys. Lett. 72, 596 (1998).
G. Pan, M. E. Kordesch, and P. G. Van Patten, Chem. Mater. 18, 5392 (2006).
P. G. V. Patten and G. Pan, US7641880B2 (5 January 2010).
R. S. Deol, H. W. Choi, M. Singh, and G. E. Jabbour, IEEE Sensors Journal 15, 3186 (2015).
H. W. Choi, T. Zhou, M. Singh, and G. E. Jabbour, Nanoscale 7, 3338 (2015).
P. Kubelka and F. Munk, Zeitschrift Fur Technische Physik 12, 593 (1931).
A. P. Purdy, Chem. Mater. 11, 1648 (1999).
B. J. Wood and R. G. J. Strens, Mineralogical Magazine 43, 509 (1979).
M. Feneberg, M. Röppischer, C. Cobet, N. Esser, J. Schörmann, T. Schupp, D. J. As, F. Hörich, J. Bläsing, A. Krost, and R. Goldhahn, Phys. Rev. B 85, 155207 (2012).
M. A. Reshchikov and H. Morkoç, Journal of Applied Physics 97, 061301 (2005).
M. Segal, C. Mulder, K. Celebi, M. Singh, K. Rivoire, S. Difley, T. Van Voorhis, and M. A. Baldo, in Proc. SPIE (2008), pp. 699912-699912–17.
M. Singh, H. S. Chae, J. D. Froehlich, T. Kondou, S. Li, A. Mochizuki, and G. Jabbour, MRS Online Proceedings Library 1197, (2009).
V. Ganesh, S. Suresh, M. Balaji, and K. Baskar, Journal of Alloys and Compounds 498, 52 (2010).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Jain, A.K., Yadav, S., Mehra, M. et al. Solution-Processed Cubic GaN for Potential Lighting Applications. MRS Advances 4, 567–574 (2019). https://doi.org/10.1557/adv.2019.105
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2019.105