Skip to main content
Log in

Limitation in growth temperature for water-assisted single wall carbon nanotube forest synthesis

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

In this study, we examined the limitations in growth temperatures for single-walled carbon nanotube (SWNT) forest synthesis using a water (H2O) growth enhancer as highlighted by a dramatic decrease in growth efficiency at high temperatures. Comparative synthesis using a carbon monoxide (CO) growth enhancer demonstrated a wider temperature window for SWNT forest synthesis. We found that SWNT forests taller than 100 μm could not been synthesized above 850 °C by using H2O, but by using CO, tall (>800 μm) forests could be synthesized at growth temperatures exceeding 900 °C. The dependency of H2O concentration showed that H2O, itself, was the cause for the reduced growth efficiency observed at higher temperatures. In contrast, increased CO concentrations did not result in any drop in the carbon nanotube (CNT) yield across the entire temperature range. While a severe drop of CNT yield above 950 °C was observed when CO was used, the origin was found to stem from catalyst particle aggregation enhanced by diffusion on the surface rather than CO itself. Therefore, the ability to synthesize at higher growth temperatures is advantageous when using more stable carbon feedstocks, such as methane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Murakami, S. Chiashi, Y. Miyauchi, M. Hu, M. Ogura, T. Okubo, and S. Maruyama, Chem. Phys. Lett. 385, 298 (2004).

    Article  CAS  Google Scholar 

  2. K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima, Science 306, 1362 (2004).

    Article  CAS  Google Scholar 

  3. J. Kong, A. Cassell, and H. Dai, Chem. Phys. Lett. 292, 567 (1999).

    Article  Google Scholar 

  4. P. Nikolaev, M.J. Bronikowski, R.K. Bradley, F. Rohmund, D.T. Colbert, K.A. Smith, and R.E. Smalley, Chem. Phys. Lett. 313, 91 (1998).

    Article  Google Scholar 

  5. G.G. Zhang, D. Mann, L. Zhang, A. Javey, Y.M. Li, E. Yenilmez, Q. Wang, J.P. McVittie, Y. Nishi, J. Gibbons, and H. Dai, Proc. Natl. Acad. Sci. U.S.A. 102, 16141 (2005).

    Article  CAS  Google Scholar 

  6. Q. Wen, W.Z. Qian, F. Wei, Y. Liu, G.Q. Ning, and Q. Zhang, Chem. Mater. 19, 1226 (2007).

    Article  CAS  Google Scholar 

  7. D.N. Futaba, J. Goto, S. Yasuda, T. Yamada, M. Yumura, and K. Hata, Adv. Mater. 21, 4811 (2009).

    Article  CAS  Google Scholar 

  8. D.N. Futaba, J. Goto, S. Yasuda, T. Yamada, M Yumura, and K. Hata, J. Am. Chem. Soc., 131, 15992 (2009)

    Article  CAS  Google Scholar 

  9. T. Yamada, A. Maigne, M. Yudasaka, K. Mizuno, D.N. Futaba, M. Yumura, S. Iijima, and K. Hata, Nano Lett. 8, 4288 (2008).

    Article  CAS  Google Scholar 

  10. P.B. Amama, C.L. Pint, L. McJilton, S.M. Kim, E.A. Stach, P.T. Murray, R.H. Hauge, amd B. Maruyama, Nano Lett. 9, 44 (2009).

    Article  CAS  Google Scholar 

  11. K. Hasegawa and S. Noda, ACS Nano 5, 975 (2011).

    Article  CAS  Google Scholar 

  12. D.N. Futaba, K. Hata, T. Yamada, K. Mizuno, M. Yumura, and S. Iijima, Phys. Rev. Lett. 95, 056104 (2005).

    Article  CAS  Google Scholar 

  13. S. Yasuda, D.N. Futaba, M. Yumura, S. Iijima, and K. Hata, Appl. Phys. Lett. 93, 143115 (2008).

    Article  CAS  Google Scholar 

  14. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, Synth. Metals, 103, 2555 (1999).

    Article  CAS  Google Scholar 

  15. G. Chen, R.C. Davis, D.N. Futaba, S. Sakurai, K. Kobashi, M. Yumura, and K. Hata, Nanoscale 8, 162 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakurai, S., Yamada, M., Hata, K. et al. Limitation in growth temperature for water-assisted single wall carbon nanotube forest synthesis. MRS Advances 3, 91–96 (2018). https://doi.org/10.1557/adv.2018.92

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.92

Navigation