Skip to main content

Advertisement

Log in

DFT Path Towards the Characterization of the SnO2-CH4 Gas Sensing Reactions

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Gas detecting and sensing is a largely studied field of knowledge, but total understanding is not yet achieved and the ideal device is still far in the future. Many experimental efforts have been devoted to find the minimum optimal temperature and operational conditions for SnO2 to sense hydrocarbons; different methods to build gas-detecting devices keep being developed all around the world, from paste-based bulk devices to nanostructured thick and thin films, but little effort has been aim to characterize the reactions by calculating their related enthalpies. Computational methods have been widely used to characterize, understand and model many physicochemical interactions. In this regard, three main courses can be followed: Ab initio (first principles of quantum mechanics), DFT (Density Functional Theory) and MD (Molecular Dynamics) simulation. In this research, DFT modelling tool is employed to understand and characterize the gas-sensing reactions of Tin Oxide when exposed to an atmosphere with Methane. In CASTEP, a robust DFT module of the Materials Studio suite, one SnO2 (110) crystal plane is exposed to CH4 and the structure is optimized many times for each possible step of the reaction, recording the energies related with each optimization stage, in sum giving us the Transition State (TS) of the reaction. Based on the data, a promising reaction-path is proposed and analyzed for the (110) surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Morrison. Sensors and Actuators, 2, 329 (1982).

    Article  CAS  Google Scholar 

  2. N. Yamazoe, G. Sakai, K. Shimanoe. Catalysis Surveys from Asia. 7 (1), 66 (2003).

    Article  Google Scholar 

  3. G. Carbajal-Franco, A. Tiburcio-Silver, J.M. Domíınguez, A. Sánchez-Juárez. Thin Solid Films 373, 141 (2000).

    Article  CAS  Google Scholar 

  4. N. Barsan, U. Weimar. J. Electroceramics. 7, 143 (2001).

    Article  CAS  Google Scholar 

  5. K. Suematsu,. M. Yuasa, T. Kida, N. Yamazoe, K. Shimanoe. Journal of The Electrochemical Society, 161 (6), B123 (2014).

    Article  CAS  Google Scholar 

  6. N. Ma, K. Suematsu, M. Yuasa, T. Kida, K. Shimanoe. ACS Appl. Mater. Interfaces. 7 (10), 5863 (2015).

    Article  CAS  Google Scholar 

  7. B. Lyson-Sypien, A. Kusior, M. Rekas, J. Zukrowski, M. Gajewska, K. Michalow-Mauke, T. Graule, M. Radecka, K. Zakrzewska. Beilstein J. Nanotechnol. 8, 108 (2017).

    Article  CAS  Google Scholar 

  8. X. Wang, H. Qin, Y. Chen, J. Hu. J. Phys. Chem. C. 118 (49), 28548 (2014).

    Article  CAS  Google Scholar 

  9. A. Janotti, J.B. Varley, J.L. Lyons, C.G. Van de Walle, in Functional Metal Oxide Nanostructures, edited by J. Wu et al. (Springer Series in Materials Science 149).

  10. C. Meier, S. Lüttjohann, V. G. Kravets, H. Nienhaus, A. Lorke, P. Ifeacho, H. Wiggers, C. Schulz, M. K. Kennedy, E. Kruis. J. Appl. Phys. 99, 113108 (2006).

    Article  Google Scholar 

  11. A. Seko, A. Togo, F. Oba, I. Tanaka. Phys. Rev. Lett. 100, 045702 (2008).

    Article  Google Scholar 

  12. O. M. Berengue, R. A. Simon, A. J. Chiquito, C. J. Dalmaschio, E. R. Leite, H. A. Guerreiro, F. E. G. Guimarães. J. Appl. Phys. 107, 033717 (2010).

    Article  Google Scholar 

  13. C. M. Aldao, D. A. Mirabella, M. A. Ponce, A. Giberti, C. Malagù. J. Appl. Phys. 109, 063723 (2011).

    Article  Google Scholar 

  14. C.M. Aldao, F. Schipani, M.A. Ponce, E. Joanni, F.J. Williams. Sensors and Actuators B 193, 428 (2014).

    Article  CAS  Google Scholar 

  15. F. Schipani, M. A. Ponce, E. Joanni, F. J. Williams, C. M. Aldao. J. Appl. Phys. 116, 194502 (2014)

    Article  Google Scholar 

  16. P. M. Desimone, C. G. Díaz, J. P. Tomba, C. M. Aldao, M. A. Ponce. J. Mater. Sci. 51, 4451 (2016).

    Article  CAS  Google Scholar 

  17. J. A. Mason, J. Oktawiec, M. K. Taylor, M. R. Hudson, J Rodriguez, J. E. Bachman, M. I. Gonzalez, A. Cervellino, A. Guagliardi, C. M. Brown, P. L. Llewellyn, N. Masciocchi J. R. Long. Nature. 527, 357 (2015).

    Article  CAS  Google Scholar 

  18. H. Xiao, M. Howard, A. Valera-Medina, S. Dooley, P. J. Bowen. Energy Fuels. 30, 8701 (2016).

    Article  CAS  Google Scholar 

  19. T. Percy, T. Polsgrove, D. Thomas. NASA Marshall Space Flight CenterNASA Technical reports Server: Methane Propulsion Elements for Mars. Available at: https://ntrs.nasa.gov/search.jsp?R=20170004427/search.jsp?R=20170004427 (accessed 27 October 2017).

  20. S. Elam Greene, C. Protz, C. Garcia, D. Goodman, K. Baker. NASA Technical reports Server: Additively Manufactured Combustion Devices Components for LOX/Methane Applications. Available at: https://ntrs.nasa.gov/search.jsp?R=20160011098/search.jsp?R=20160011098 (accessed 27 October 2017).

  21. R. A. Rasmussen, M. A. K. Khalil. J. Geophys. Res. 86 (10), 9826 (1981).

    Article  CAS  Google Scholar 

  22. A. Kumar, K.A. Subramanian. Applied Thermal Engineering 127, 95 (2017).

    Article  CAS  Google Scholar 

  23. Y. M. Park, Y. J. Lee, Z. Hussain, Y. H. Lee, H. Park. Neurogastroenterology & Motility. 29, e13077 (2017).

    Article  Google Scholar 

  24. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C. Payne. Zeitschrift fuer Kristallographie. 220 (5–6), 567 (2005).

    CAS  Google Scholar 

  25. Halgren, T. A.; Lipscomb, W. N. Chem. Phys. Lett., 49, 225 (1977).

    Article  CAS  Google Scholar 

  26. H. Windischamn, P. Mark. J. Electrochem. Soc.: Solid State Science and Techonolgy. 126 (4), 627 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carbajal-Franco, G., Márquez-Quintana, M.F. DFT Path Towards the Characterization of the SnO2-CH4 Gas Sensing Reactions. MRS Advances 2, 3925–3931 (2017). https://doi.org/10.1557/adv.2018.82

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.82

Navigation