Skip to main content

Advertisement

Log in

Plasmon-enhanced photocatalysis: Ag/TiO2 nanocomposite for the photochemical reduction of bicarbonate to formic acid

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Plasmonic metallic nanoparticles can significantly enhance the catalytic efficiency of semiconductors via plasmonic photocatalysis. In this study, a hybrid Ag/TiO2 photocatalyst was synthesized and tested for the photochemical reduction of bicarbonate to value-added formic acid. It was found that under solar irradiation, TiO2 is not very efficient, but formate production is significantly increased with the addition of silver nanoparticles. Under 365 nm irradiation, the photocatalytic efficiency of TiO2 is enhanced, but no effect was observed with the addition of silver nanoparticles. Under solar irradiation, Ag/TiO2 reached an apparent quantum efficiency (AQE) of 7.78 ± 0.04%, the highest AQE observed so far. Enhanced photocatalytic activity is attributed to the synergistic effect between UV photon excitation of TiO2 and surface plasmon resonance enhancement. To elucidate the mechanism of plasmon-enhanced photocatalysis, experiments were performed under solar irradiation and 365 nm irradiation. We propose that photo-excited electrons are transferred from above the Fermi level of the metal nanoparticle to the conduction band of the semiconductor through plasmon-induced electron transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K., Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors. Angewandte Chemie International Edition 2013, 52 (29), 7372–7408.

    Article  CAS  Google Scholar 

  2. O’Regan, B.; Xiaoe, L.; Ghaddar, T., Dye adsorption, desorption, and distribution in mesoporous TiO2 films, and its effects on recombination losses in dye sensitized solar cells. Energy & Environmental Science 2012, 5 (5), 7203-7215.

    Article  Google Scholar 

  3. Wang, M.; Bai, J.; Le Formal, F.; Moon, S.-J.; Cevey-Ha, L.; Humphry-Baker, R.; Grätzel, C.; Zakeeruddin, S. M.; Grätzel, M., Solid-State Dye-Sensitized Solar Cells using Ordered TiO2 Nanorods on Transparent Conductive Oxide as Photoanodes. The Journal of Physical Chemistry C 2012, 116 (5), 3266-3273.

    Article  CAS  Google Scholar 

  4. Sun, T.; Fan, J.; Liu, E.; Liu, L.; Wang, Y.; Dai, H.; Yang, Y.; Hou, W.; Hu, X.; Jiang, Z., Fe and Ni co-doped TiO2 nanoparticles prepared by alcohol-thermal method: Application in hydrogen evolution by water splitting under visible light irradiation. Powder Technology 2012, 228, 210-218.

    Article  CAS  Google Scholar 

  5. Fan, J.; Liu, E.-z.; Tian, L.; Hu, X.-y.; He, Q.; Sun, T., Synergistic Effect of N and Ni 2 + on Nanotitania in Photocatalytic Reduction of CO2. Journal of Environmental Engineering 2011, 137 (3), 171–176.

    Article  CAS  Google Scholar 

  6. Bian, Z.; Tachikawa, T.; Kim, W.; Choi, W.; Majima, T., Superior Electron Transport and Photocatalytic Abilities of Metal-Nanoparticle-Loaded TiO2 Superstructures. The Journal of Physical Chemistry C 2012, 116 (48), 25444–25453.

    Article  CAS  Google Scholar 

  7. Yanagida, S.; Makino, M.; Ogaki, T.; Yasumori, A., Preparation of Pd–Pt Co-Loaded TiO2 Thin Films by Sol-Gel Method for Hydrogen Gas Sensing. Journal of The Electrochemical Society 2012, 159 (12), B845–B849.

    Article  CAS  Google Scholar 

  8. Li, X.; Zhuang, Z.; Li, W.; Pan, H., Photocatalytic reduction of CO2 over noble metalloaded and nitrogen-doped mesoporous TiO2. Applied Catalysis A: General 2012, 429–430, 31–38.

    Article  Google Scholar 

  9. Sun, L.; Li, J.; Wang, C.; Li, S.; Lai, Y.; Chen, H.; Lin, C., Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity. Journal of Hazardous Materials 2009, 171 (1), 1045–1050.

    Article  CAS  Google Scholar 

  10. Houšková, V.; Štengl, V.; Bakardjieva, S.; Murafa, N.; Tyrpekl, V., Efficient gas phase photodecomposition of acetone by Ru-doped Titania. Applied Catalysis B: Environmental 2009, 89 (3), 613-619.

    Article  Google Scholar 

  11. Kooij, E. S.; Ahmed, W.; Zandvliet, H. J. W.; Poelsema, B., Localized Plasmons in Noble Metal Nanospheroids. The Journal of Physical Chemistry C 2011, 115 (21), 10321–10332.

    Article  CAS  Google Scholar 

  12. Liu, E.; Kang, L.; Wu, F.; Sun, T.; Hu, X.; Yang, Y.; Liu, H.; Fan, J., Photocatalytic Reduction of CO2 into Methanol over Ag/TiO2 Nanocomposites Enhanced by Surface Plasmon Resonance. Plasmonics 2014, 9 (1), 61–70.

    Article  CAS  Google Scholar 

  13. Liu, E.; Hu, Y.; Li, H.; Tang, C.; Hu, X.; Fan, J.; Chen, Y.; Bian, J., Photoconversion of CO2 to methanol over plasmonic Ag/TiO2 nano-wire films enhanced by overlapped visible-light-harvesting nanostructures. Ceramics International 2015, 41 (1, Part B), 1049–1057.

    Article  CAS  Google Scholar 

  14. Kočí, K.; Matĕjů, K.; Obalová, L.; Krejčíková, S.; Lacný, Z.; Plachá, D.; Čapek, L.; Hospodková, A.; Šolcová, O., Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Applied Catalysis B: Environmental 2010, 96 (3–4), 239–244.

    Article  Google Scholar 

  15. Kong, D.; Tan, J. Z. Y.; Yang, F.; Zeng, J.; Zhang, X., Electrodeposited Ag nanoparticles on TiO2 nanorods for enhanced UV visible light photoreduction CO2 to CH4. Applied Surface Science 2013, 277, 105-110.

    Article  CAS  Google Scholar 

  16. Pan, H.; Steiniger, A.; Heagy, M. D.; Chowdhury, S., Efficient production of formic acid by simultaneous photoreduction of bicarbonate and oxidation of glycerol on gold-TiO2 composite under solar light. Journal of CO2 Utilization 2017, 22, 117-123.

    Article  CAS  Google Scholar 

  17. Pan, H.; Chowdhury, S.; Premachandra, D.; Olguin, S.; Heagy, M. D., Semiconductor Photocatalysis of Bicarbonate to Solar Fuels: Formate Production from Copper(I) Oxide. ACS Sustainable Chemistry & Engineering 2017.

  18. Ledwith, D. M.; Whelan, A. M.; Kelly, J. M., A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles. Journal of Materials Chemistry 2007, 17 (23), 2459–2464.

    Article  CAS  Google Scholar 

  19. Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J., Hot Electrons Do the Impossible: Plasmon-Induced Dissociation of H2 on Au. Nano Letters 2013, 13 (1), 240-247.

    Article  CAS  Google Scholar 

  20. He, W.; Jia, H.; Cai, J.; Han, X.; Zheng, Z.; Wamer, W. G.; Yin, J.-J., Production of Reactive Oxygen Species and Electrons from Photoexcited ZnO and ZnS Nanoparticles: A Comparative Study for Unraveling their Distinct Photocatalytic Activities. The Journal of Physical Chemistry C 2016, 120 (6), 3187–3195.

    Article  CAS  Google Scholar 

  21. Molinari, A.; Samiolo, L.; Amadelli, R., EPR spin trapping evidence of radical intermediates in the photo-reduction of bicarbonate/CO2 in TiO2 aqueous suspensions. Photochemical & Photobiological Sciences 2015, 14 (5), 1039–1046.

    Article  CAS  Google Scholar 

  22. Leonard, D. P.; Pan, H.; Heagy, M. D., Photocatalyzed Reduction of Bicarbonate to Formate: Effect of ZnS Crystal Structure and Positive Hole Scavenger. ACS applied materials & interfaces 2015, 7 (44), 24543–24549.

    Article  CAS  Google Scholar 

  23. Di Valentin, C.; Fittipaldi, D., Hole Scavenging by Organic Adsorbates on the TiO2 Surface: A DFT Model Study. The Journal of Physical Chemistry Letters 2013, 4 (11), 1901–1906.

    Article  Google Scholar 

  24. Johnson, P. B.; Christy, R. W., Optical Constants of the Noble Metals. Physical Review B 1972, 6 (12), 4370–4379.

    Article  CAS  Google Scholar 

  25. Xuming, Z.; Yu Lim, C.; Ru-Shi, L.; Din Ping, T., Plasmonic photocatalysis. Reports on Progress in Physics 2013, 76 (4), 046401.

  26. Awazu, K.; Fujimaki, M.; Rockstuhl, C.; Tominaga, J.; Murakami, H.; Ohki, Y.; Yoshida, N.; Watanabe, T., A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide. Journal of the American Chemical Society 2008, 130 (5), 1676-1680.

    Article  CAS  Google Scholar 

  27. Bumajdad, A.; Madkour, M., Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation. Physical Chemistry Chemical Physics 2014, 16 (16), 7146–7158.

    Article  CAS  Google Scholar 

  28. Christopher, P.; Ingram, D. B.; Linic, S., Enhancing Photochemical Activity of Semiconductor Nanoparticles with Optically Active Ag Nanostructures: Photochemistry Mediated by Ag Surface Plasmons. The Journal of Physical Chemistry C 2010, 114 (19), 9173–9177.

    Article  CAS  Google Scholar 

  29. Clavero, C., Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photonics 2014, 8 (2), 95-103.

    Article  CAS  Google Scholar 

  30. Furube, A.; Du, L.; Hara, K.; Katoh, R.; Tachiya, M., Ultrafast Plasmon-Induced Electron Transfer from Gold Nanodots into TiO2 Nanoparticles. Journal of the American Chemical Society 2007, 129 (48), 14852–14853.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, H., Heagy, M.D. Plasmon-enhanced photocatalysis: Ag/TiO2 nanocomposite for the photochemical reduction of bicarbonate to formic acid. MRS Advances 4, 425–433 (2019). https://doi.org/10.1557/adv.2018.677

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.677

Navigation