Skip to main content
Log in

Quantum Dots as Photocatalysts for Bicarbonate Reduction to Solar Fuels: Formate Production from CuS, CuInS2, and CuInS2/ZnS

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

In this study, non-cadmium-based quantum dots were synthesized and used as catalysts for the photochemical reduction of bicarbonate to value-added formic acid. Three types of quantum dots (CuS, CuInS2, and CuInS2/ZnS) were chosen because of they feature environmentally benign properties, possess wide optical absorption, and exhibit excellent photocatalytic activity. All three photocatalysts exhibited excellent efficiency in the photo-reduction of bicarbonate to formic acid, with CuInS2/ZnS showing the highest photon to formate conversion efficiency of 6.07 ± 0.07%. We attribute these exceptional results to their smaller bandgap leading to enhanced visible light absorption and the application of an appropriate hole scavenger that prolongs photo-generated charge carrier separation. To the best of our knowledge, the application of quantum dots in photocatalysis is still quite limited; this report describes the highest apparent quantum efficiency (AQE) to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chaudhary, G. R.; Bansal, P.; Mehta, S. K., Recyclable CuS quantum dots as heterogeneous catalyst for Biginelli reaction under solvent free conditions. Chemical Engineering Journal 2014, 243, 217–224.

    Article  CAS  Google Scholar 

  2. Yin, L.; Bai, Y.; Zhou, J.; Cao, J.; Sun, X.; Zhang, J., The thermal stability performances of the color rendering index of white light emitting diodes with the red quantum dots encapsulation. Optical Materials 2015, 42, 187–192.

    Article  CAS  Google Scholar 

  3. Chung, W.; Park, K.; Yu, H. J.; Kim, J.; Chun, B.-H.; Kim, S. H., White emission using mixtures of CdSe quantum dots and PMMA as a phosphor. Optical Materials 2010, 32 (4), 515–521.

    Article  CAS  Google Scholar 

  4. Panthani, M. G.; Akhavan, V.; Goodfellow, B.; Schmidtke, J. P.; Dunn, L.; Dodabalapur, A.; Barbara, P. F.; Korgel, B. A., Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal “Inks” for Printable Photovoltaics. Journal of the American Chemical Society 2008, 130 (49), 16770–16777.

    Article  CAS  Google Scholar 

  5. Nanu, M.; Schoonman, J.; Goossens, A., Nanocomposite Three-Dimensional Solar Cells Obtained by Chemical Spray Deposition. Nano Letters 2005, 5 (9), 1716–1719.

    Article  CAS  Google Scholar 

  6. Somers, R. C.; Bawendi, M. G.; Nocera, D. G., CdSe nanocrystal based chem-/bio-sensors. Chemical Society Reviews 2007, 36 (4), 579–591.

    Article  CAS  Google Scholar 

  7. Medintz, I. L.; Stewart, M. H.; Trammell, S. A.; Susumu, K.; Delehanty, J. B.; Mei, B. C.; Melinger, J. S.; Blanco-Canosa, J. B.; Dawson, P. E.; Mattoussi, H., Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nature materials 2010, 9, 676.

    Article  CAS  Google Scholar 

  8. Smith, A. M.; Duan, H.; Mohs, A. M.; Nie, S., Bioconjugated quantum dots for in vivo molecular and cellular imaging. Advanced Drug Delivery Reviews 2008, 60 (11), 1226– 1240.

    Article  CAS  Google Scholar 

  9. Chuang, P.-H.; Lin, C. C.; Liu, R.-S., Emission-Tunable CuInS2/ZnS Quantum Dots: Structure, Optical Properties, and Application in White Light-Emitting Diodes with High Color Rendering Index. ACS applied materials & interfaces 2014, 6 (17), 15379–15387.

    Article  CAS  Google Scholar 

  10. Wang, X.; Liang, Z.; Xu, X.; Wang, N.; Fang, J.; Wang, J.; Xu, G., A high efficient photoluminescence Zn–Cu–In–S/ZnS quantum dots with long lifetime. Journal of Alloys and Compounds 2015, 640, 134-140.

    Article  CAS  Google Scholar 

  11. Michalska, M.; Aboulaich, A.; Medjahdi, G.; Mahiou, R.; Jurga, S.; Schneider, R., Amine ligands control of the optical properties and the shape of thermally grown core/shell CuInS2/ZnS quantum dots. Journal of Alloys and Compounds 2015, 645, 184– 192.

    Article  CAS  Google Scholar 

  12. Yue, W.; Han, S.; Peng, R.; Shen, W.; Geng, H.; Wu, F.; Tao, S.; Wang, M., CuInS2 quantum dots synthesized by a solvothermal route and their application as effective electron acceptors for hybrid solar cells. Journal of Materials Chemistry 2010, 20 (35), 7570–7578.

    Article  CAS  Google Scholar 

  13. Pan, H.; Chowdhury, S.; Premachandra, D.; Olguin, S.; Heagy, M. D., Semiconductor Photocatalysis of Bicarbonate to Solar Fuels: Formate Production from Copper(I) Oxide. ACS Sustainable Chemistry & Engineering 2017

  14. Lewis, N. S.; Nocera, D. G., Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences 2006, 103 (43), 15729– 15735.

    Article  CAS  Google Scholar 

  15. Ma, J.; Liu, M.; Li, Z.; Li, L., Synthesis of highly photo-stable CuInS2/ZnS core/shell quantum dots. Optical Materials 2015, 47, 56–61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, H., Rajapaksha, R. & Heagy, M.D. Quantum Dots as Photocatalysts for Bicarbonate Reduction to Solar Fuels: Formate Production from CuS, CuInS2, and CuInS2/ZnS. MRS Advances 4, 953–958 (2019). https://doi.org/10.1557/adv.2018.646

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.646

Navigation