Skip to main content
Log in

Estimating the Relative Energy Content of Reactive Materials Using Nanosecond-Pulsed Laser Ablation

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Recently, a laboratory-scale method for measuring the rapid energy release from milligram quantities of energetic material has been developed based on the high-temperature plasma chemistry induced by a focused, nanosecond laser pulse. The ensuing exothermic chemical reactions result in an increase in the laser-induced shock wave velocity compared to inert materials. Laser-induced air shock from energetic materials (LASEM) provides a method for estimating the detonation performance of novel organic-based energetic materials prior to scale-up and full detonation testing. Here, the extension of LASEM to non-organic energetic materials is discussed. The laser-induced shock velocities from reactive materials such as Al/PTFE, Al/CuO, Al/Zr alloys, Al/aluminum iodate hexahydrate, and porous silicon composites have been measured; in many cases, the high sensitivity of the samples resulted in propagation of the reaction to the surrounding material, producing significantly higher shock velocities than conventional energetic materials. Methods for compensating for this effect will be discussed. Despite this limitation, the relative comparison of the shock velocities, emission spectra, and combustion behavior of each type of material provides some insight into the mechanisms for increasing the energy release of the material on a fast (µs) and/or slow (ms) timescale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Burakov, N. V. Tarasenko, and N. A. Savastenko, Spectrochim. Acta, Part B 56, 961 (2001).

    Google Scholar 

  2. J. L. Gottfried, Appl. Opt. 51, B13–B21 (2012).

    CAS  Google Scholar 

  3. S. Roy, N. Jiang, H. U. Stauffer, J. B. Schmidt, W. D. Kulatilaka, T. R. Meyer, C. E. Bunker, and J. R. Gord, J. Appl. Phys. 113, 184310 (2013).

    Google Scholar 

  4. T. Delgado, J. M. Vadillo, and J. J. Laserna, J. Anal. At. Spectrom. 29, 1675–1685 (2014).

    CAS  Google Scholar 

  5. S. A. Kalam, N. L. Murthy, P. Mathi, N. Kommu, A. K. Singh, and S. V. Rao, J. Anal. At. Spectrom. 32, 1535–1546 (2017).

    CAS  Google Scholar 

  6. W. Guo, X. Zheng, G. Yu, J. Zhao, Y. Zeng, and C. Liu, J. Appl. Phys. 120, 123301 (2016).

    Google Scholar 

  7. Y. A. Rezunkov, J. Opt. Technol. 74, 526–535 (2007).

    CAS  Google Scholar 

  8. C. Phipps, M. Birkan, W. Bohn, H.-A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, J. Propul. Power 26, 609–637 (2010).

    CAS  Google Scholar 

  9. C. Kimblin, R. Trainham, G. A. Capelle, X. Mao, and R. E. Russo, AIP Adv. 7, 095208 (2017).

    Google Scholar 

  10. J. L. Gottfried, Phys. Chem. Chem. Phys. 16, 21452–21466 (2014).

    CAS  Google Scholar 

  11. J. L. Gottfried, Propellants Explos. Pyrotech. 40, 674–681 (2015).

    CAS  Google Scholar 

  12. D. Fischer, J. L. Gottfried, T. M. Klapötke, K. Karaghiosoff, J. Stierstorfer, and T. G. Witkowski, Angew. Chem., Int. Ed. 128, 16366–13369 (2016).

    Google Scholar 

  13. J. L. Gottfried and E. J. Bukowski, Appl. Opt. 56, B47–B57 (2017).

    CAS  Google Scholar 

  14. J. L. Gottfried, T. M. Klapötke, and T. G. Witkowski, Propellants Explos. Pyrotech. 42, 353–359 (2017).

    CAS  Google Scholar 

  15. F. C. De Lucia Jr. and J. L. Gottfried, Propellants, Explos., Pyrotech. 35, 268–277 (2010).

    Google Scholar 

  16. F. C. De Lucia and J. L. Gottfried, J. Phys. Chem. A 117, 9555–9563 (2013).

    Google Scholar 

  17. E. S. Collins and J. L. Gottfried, Propellants Explos. Pyrotech. 42, 592–602 (2017).

    CAS  Google Scholar 

  18. A. S. Mukasyan, B. B. Khina, R. V. Reeves, and S. F. Son, Chem. Eng. J. 174, 677–686 (2011).

    CAS  Google Scholar 

  19. T. R. Sippel, S. F. Son, and L. J. Groven, Propellants Explos. Pyrotech. 38, 286–295 (2013).

    CAS  Google Scholar 

  20. T. R. Sippel, S. F. Son, and L. J. Groven, Combust. Flame 161, 311–321 (2014).

    CAS  Google Scholar 

  21. M. A. Rubio, I. E. Gunduz, L. J. Groven, T. R. Sippel, C. W. Han, R. R. Unocic, V. Ortalan, and S. F. Son, Combust. Flame 176, 162–171 (2017).

    CAS  Google Scholar 

  22. C. D. Yarrington, S. F. Son, and T. J. Foley, J. Propul. Power 26, 734–743 (2010).

    CAS  Google Scholar 

  23. H. Wang, G. Jian, S. Yan, J. B. DeLisio, C. Huang, and M. R. Zachariah, ACS Appl. Mater. Interfaces 5, 6797–6801 (2013).

    CAS  Google Scholar 

  24. H. Wang, G. Jian, G. C. Egan, and M. R. Zachariah, Combust. Flame 161, 2203–2208 (2014).

    CAS  Google Scholar 

  25. A. M. Altshuler, “Structural Bond Energy Release in Energetic Materials as New Means for Designing Nonconventional High Explosives: An Analysis of Soviet Research,” Report No. TRC-91-0003 TR (Technical Research Corporation, McLean, VA, 1991).

    Google Scholar 

  26. N. S. Weingarten, J. L. Gottfried, I. G. Batyrev, E. S. Collins, and M. R. Zachariah, “Utilizing the power of nanostructures to their fullest capability in energetic formulations,” Report No. ARL-TR-7604 (2016).

  27. K. R. Overdeep, K. J. T. Livi, D. J. Allen, N. G. Glumac, and T. P. Weihs, Combust. Flame 162, 2855–2864 (2015).

    CAS  Google Scholar 

  28. D. K. Smith, M. N. Bello, D. K. Unruh, and M. L. Pantoya, Combust. Flame 179, 154–156 (2017).

    CAS  Google Scholar 

  29. M. d. Plessis, Propellants, Explos., Pyrotech. 39, 348–364 (2014).

    CAS  Google Scholar 

  30. N. W. Piekiel and C. J. Morris, ACS Appl. Mater. Interfaces 7, 9889–9897 (2015).

    CAS  Google Scholar 

  31. A. Abraham, N. W. Piekiel, C. J. Morris, and E. L. Dreizin, Propell. Explos. Pyrotech. 41, 179–188 (2016).

    CAS  Google Scholar 

  32. I. Khalaf Abbas, L. Ahmed Najam, and A. UlKahliq AuobSulaiman, Int. J. Phys. 3, 1–7 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gottfried, J.L., Dean, S.W., Collins, E.S. et al. Estimating the Relative Energy Content of Reactive Materials Using Nanosecond-Pulsed Laser Ablation. MRS Advances 3, 875–886 (2018). https://doi.org/10.1557/adv.2018.62

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.62

Navigation