Abstract
Bismuth triiodide (BiI3) has been studied aiming the development of lead-free photovoltaic materials. It can also be used as X-ray detectors due to the high density of its elements (bismuth and iodine). We investigate the mechanical stress, hardness, and elastic properties of BiI3 thin films deposited by thermal evaporation. The stress was determined by the bending beam technique using the Stoney equation. The films are tensile with stress of approximately 27 MPa. The hardness and the elastic modulus were determined by nanoindentation technique using a Berkovich diamond tip. The hardness of the films is approximately 0.8 GPa and the reduced Young´s modulus is ∼28 GPa for maximum penetration depth of 10% of the film thickness.
Similar content being viewed by others
References
A. T. Lintereur, W. Qiu, J. C. Nino, and J. Baciak, Nucl. Instrum. Methods Phys. Res., Sect. A 652, 166–169 (2011).
L. Fornaro, E. Saucedo, L. Mussio, A. Gancharov, and A. Cuna, IEEE Nucl. Sci. Symp. Conf. Rec. 1, 33–37 (2002).
P. J. Sellin, Nucl. Instrum. Methods Phys. Res., Sect. A 563, 1–8, (2006).
H. Han, M. Hong, S. S. Gokhale, S. B. Sinnott, K. Jordan, J. E. Baciak, and J. C Nino, J. Phys. Chem. C 118, 3244–3250 (2014).
National renewable energy laboratory, best research-cell efficiencies chart. Available at https://www.nrel.gov/pv/assets/images/efficiency-chart.png (accessed 13 september 2018).
W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo and S.I. Seok, Science 348, 1234–1237 (2015).
M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. CorreaBaena, W.R. Tress, A. Abate, A. Hagfeldt and M. Grätzel, Science 354, 206–209 (2016).
D. Bi, W. Tress, M.I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.-P Correa Baena, J.-D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel and A. Hagfeldt, Science Advances, 2 (1), e1501170 (2016).
J. M. C. da Silva Filho and F. C. Marques, MRS Advances, 3 (32), 1843–1848 (2018).
D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba, M.T. Hörantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz and H.J. Snaith. Science 351 (6269), 151–155 (2016).
J. Zeitouny, E. A. Katz, A. Dollet and A. Vossier, Scientific Reports 7, 1766 (2017).
Q.H. Fan, C. Chen, X. Liao, X. Xiang, S. Zhang, W. Ingler, N. Adiga, Z. Hu, X. Cao, W. Du and X. Deng, Solar Energy Materials & Solar Cells 94, 1300–1302 (2010).
I. E. Chambouleyron, F.C. Marques, J. Cisneros, F. Alvarez, S. Moehlecke, W. Losch, and I. Pereira, J. of Non-Cryst. Solids, 77&78, 1309 (1985).
R. Zhou, L. Wan, H. Niu, L. Yang, X. Mao, Q. Zhang, S. Miao, J. Xu and G. Cao, Sol. Energy Mater. Sol. Cells 155, 20–29 (2016).
R. E. Brandt, R. C. Kurchin, R. L. Z. Hoye, J. R. Poindexter, M. W.B. Wilson, S. Sulekar, F. Lenahan, P. X. T. Yen, V. Stevanovic, J. C. Nino, M. G. Bawendi, and T. Buonassisi, J. Phys. Chem. Lett. 6, 4297–4302 (2015).
N. J. Podraza, W. Qiu, B. B. Hinojosa, H. Xu, M. A. Motyka, S. R. Phillpot, J. E. Baciak, S. Trolier-McKinstry, and J. C. Nino, J. Appl. Phys. 114, 033110 (2013).
U. H. Hamdeh, R. D. Nelson, B. J. Ryan, U. Bhattacharjee, J. W. Petrich, and M. G. Panthani, Chem. Mater. 28, 6567–6574 (2016).
A. J. Lehner, H. Wang, D. H. Fabini, C. D. Liman, C.A. Hébert, E. E. Perry, M. Wang, G. C. Bazan, M. L. Chabinyc, and R. Seshadri, Appl. Phys. Lett. 107, 131109 (2015).
R. L. Z. Hoye, R. E. Brandt, A. Osherov, V. Stevanovic, S. D. Stranks, M. W. B. Wilson, H. Kim, A. J. Akey, J. D. Perkins, R. C. Kurchin, J. R. Poindexter, E. N. Wang, M. G. Bawendi, V. Bulovic, and T. Buonassisi, Chem. -Eur. J. 22, 2605–2610 (2016).
C. Ran, Z. Wu, J. Xi, F. Yuan, H. Dong, T. Lei, X. He, and X. Hou, J. Phys. Chem. Lett. 8, 394–400 (2017).
Z. Zhang, X. Li, X. Xia, Z. Wang, Z. Huang, B. Lei, and Y. Gao, J. Phys. Chem. Lett. 8, 4300–4307 (2017).
N.F. Coutinho, R. B. Merlo, N.F.V. Borrero, and F. C. Marques, MRS Advances, 1–4 (2018).
C. H. Poa, R. G. Lacerda, D. C. Cox, S. R. P. Silva, and F. C. Marques, Appl. Phys. Lett. 81 (5), 853–855 (2002).
A. Champi, R. G. Lacerda and F. C. Marques, Thin Solid Films, 420–421, 200–204 (2002).
G Gerald Stoney. Proc. R. Soc. London, Ser. A 82 (553), 172–175 (1909).
M. M. de Lima Jr., R. G. Lacerda, J. Vilcarromero, and F. C. Marques, J. Appl. Phys. 86, 4936–4942 (1999).
Warren Carl Oliver and George Mathews Pharr. J. Mater. Res., 7(6):1564–1583, (1992).
D. Nason and L. Keller, J. Cryst. Growth 156, 221–226 (1995).
G. Abadias, E. Chason, J. Keckes, M. Sebastiani, G. B. Thompson, E. Barthel, G. L. Doll, C. E. Murray, C. H. Stoessel, L. Martinu, J. Vac. Sci. Technol., A, 36, 020801 (2018).
F. C. Marques, P. Wickboldt, D. Pang, J. H. Chen and W. Paul, J. Appl. Phys. 84, 3118–3124 (1998).
P. M. Johns, PhD. Thesis, University of Florida, (2017).
X. X. Sun, Y. L. Li, G. H. Zhong, H. P. Lu, Z. Zeng, Phys. B, 407, 735–739 (2012).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Coutinho, N.F., Cucatti, S., Merlo, R.B. et al. Stress, Hardness and Elastic Modulus of Bismuth Triiodide (BiI3). MRS Advances 3, 3925–3931 (2018). https://doi.org/10.1557/adv.2018.593
Published:
Issue Date:
DOI: https://doi.org/10.1557/adv.2018.593