Skip to main content
Log in

CO2 capture and biomethane obtention using activated carbon filter of animal origin

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Carbon fibers and activated carbon fibers are materials of high industrial interest. When presented as a felt, its use becomes easier and more practical. This work aims to study the conditions for obtaining and characterizing an activated carbon felt, using sheep wool as a precursor. The wool felt was oxidized, carbonized in nitrogen atmosphere and activated in water vapor. The working temperatures were selected through thermogravimetric analysis. The products and intermediates were characterized through thermogravimetric analysis, infrared spectroscopy, scanning electron microscopy, Raman spectroscopy and nitrogen adsorption-desorption. The products were assessed as potential sorbents for methane-carbon dioxide separation by adsorption kinetics measurements at different pressures. Results revealed a high influence of the carbonization temperature on the physicochemical and textural properties of the products. The adsorption kinetics and capacities of the gases showed that selectivities in separation were related to both felt carbonization temperature and gas pressure. This work revealed that activated carbon wool felts are a good alternative to synthetic fibers felt and they can be used for methane/carbon dioxide separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pickering K., Efendi M., Le T. (2016) A review of recent developments in natural fiber composites and their mechanical performance. Composites: Part A 83:98–112.

    Article  CAS  Google Scholar 

  2. Andersen S. (2016) Nano carbon supported platinum catalyst interaction behavior with perfluorosulfonic acid ionomer and their interface structures. Applied Catalysis B: Environmental 181:146–155.

    Article  CAS  Google Scholar 

  3. Ye. J., Liu. Z., Lai C., Lo C., Lee C. (2016) Diameter effect of electro spun carbon fiber support for the catalysis of Pt nanoparticles in glucose oxidation. Chemical Engineering Journal 283:304–312.

    Article  CAS  Google Scholar 

  4. Hwang S., Choi. W., Lin. S. (2016) Hydrogen storage characteristics of carbon fibers derived from rice straw and paper mulberry. Materials Letters 167:18–21.

    Article  CAS  Google Scholar 

  5. Shimekit, B., Mukhtar, H., Murugesan, T. (2011) Prediction of the relative permeability of gases in mixed matrix membranes. Journal of Membrane Science 373:152–159.

    Article  CAS  Google Scholar 

  6. Tagliabue, M., Farrusseng, D., Valencia, S., Aguado, S., Ravon, U., Rizzo, C., Corma, A., Mirodatos, C. (2009) Natural gas treating by selective adsorption: Material science and chemical engineering interplay. Chemical Engineering Journal 155:553–566.

    Article  CAS  Google Scholar 

  7. Favvas, E.P., Katsaros, F.K., Papageorgiou, S.K., Sapalidis, A.A., Mitropoulos, A.Ch. (2017) A review of the latest development of polyimide-based membranes for CO2 separations. Reactive and Functional Polymers, 120:104–130.

    Article  CAS  Google Scholar 

  8. Jeon, Y.W., Shin, M.S. (2017) Separation of biogas using newly prepared cellulose acetate hollow fiber membranes. Energy Procedia, 136:219–224.

    Article  CAS  Google Scholar 

  9. Macias-Garcia. A., Cuerda-Correa. E., Olivares-Marinb. M., Diaz-Paralejo. A. y Diaz-Dieza. M. A. (2012) Industrial Crops and Products 35: 105–110.

    Article  Google Scholar 

  10. Kim. H.; Jeong. N., Han. S. (2012) Applied Catalysis B: Environmental 116:113–114.

    Google Scholar 

  11. Rosas. J.; Bedia. J.; Rodríguez-Mirasol. J.; Cordero. T. (2009) HEMP-derived activated carbon fibers by chemical activation with phosphoric acid. Fuel. 88:19–26

    Article  CAS  Google Scholar 

  12. Hoa Phan, N., Rio, S., Faur, C., Le Coq, L., Le Cloirec, P., Hong Nguyen, T. (2006) Production of fibrous activated carbons from natural cellulose (jute, coconut) fibers for water treatment applications. Carbon 44:2569–2577.

    Article  Google Scholar 

  13. Marcuzzo. J., Otani. C., Polidoro. H., Otani. S., Rodrígues. L. (2011) Use of carbon fiber produced from textile PAN for cleaning water pollution. Anais do V Congresso Brasileiro de Carbono 97–101.

  14. Altoé. G., Canto. L., Castro. L. (2011) Effects of stabilization conditions on microstructure and chemical composition of carbon fibers obtained from petroleum pitch, temperature and residence time. Anais do V Congresso Brasileiro de Carbono 124–128.

  15. Kil, H.S., Jang, S.Y., Ko, S., Jeon, Y.P., Kim, H.C., Joh, H.I., Lee, S. (2018) Effects of stabilization variables on mechanical properties of isotropic pitch based carbon fibers. Journal of Industrial and Engineering Chemistry, 58: 349–356.

    Article  CAS  Google Scholar 

  16. Amaya, A., Pina, A.C., García, L., Tancredi, N., Marcuzzo, J. (2015) Production and characterization of carbon felt from wool. Carbon 2015.

  17. Park, S.J.(2015) Carbon Fibers. Springer Series in Materials Science 210.

  18. Hassan, M.M., Schiermeister, L., Staiger, M.P. (2015) Sustainable Production of Carbon Fiber: Effect of Crosslinking in Wool Fiber on Carbon Yields and Morphologies of Derived Carbon Fiber. ACS Sustainable Chem. Eng. 311:2660–2668.

    Article  Google Scholar 

  19. Hassan, M.M., Schiermeister, L., Staiger, M.P. (2015) Thermal, chemical and morphological properties of carbon fibers derived from chemically pre-treated wool fibers. RSC Advances, 5: 55353–55362.

    Article  CAS  Google Scholar 

  20. Gao, Q., Liu, H., Cheng, C., Li, K., Zhang, J., Zhang, C., Li, Y. (2013) Preparation and characterization of activated carbon from wool waste and the comparison of muffle furnace and microwave heating methods. Powder Technology, 249: 234–240.

    CAS  Google Scholar 

  21. Chen. W., Liu. X., He. R.L., Lin. T., Zeng. Q.F., Wang. X.G. (2013) Activated carbon powders from wool fibers. Powder Technology 234:76–83.

    Article  CAS  Google Scholar 

  22. Dubinin, M. M. (1979) Characterization of Porous Solids. London: The Society of Chemical Industry.

    Google Scholar 

  23. Kim, N., Bhattacharyya, D. (2016) Development of fire resistant wool polymer composites: mechanical performance and fire simulation with design perspectives. Materials and Design, 106:391–403.

    Article  CAS  Google Scholar 

  24. Monier, M., Nawar, N., Abdel-Latif, D. (2012) Preparation and characterization of chelating fibers based on natural wool for removal of Hg(II), Cu(II) and Co(II) metal ions from aqueous solutions. Journal of Hazardous Materials, 184(1–3): 118–25.

    Article  Google Scholar 

  25. Xu, W., Ke, G., Wu, J., Wang, X. (2006) Modification of wool fiber using steam explosion. European Polymer Journal 42:2168–2173.

    Article  CAS  Google Scholar 

  26. Baldan, M.R., Almeida, E.C., Azevedo, A.F, Goncalves, E.S., Rezende, M.C., Ferreira, N.G. (2007) Raman validity for crystallite size La determination on reticulated vitreous carbon with different graphitization index. Applied Surface Science 254: 600–603.

    Article  CAS  Google Scholar 

  27. Brunauer S., Emmett P., Teller E. (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc. 60:309–319

    Article  CAS  Google Scholar 

  28. Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G., Sing, K.S.W. (2013) Adsorption by Powders and Porous Solids: Principle, Methodology and Applications. 2nd Edition, Academic Press, New York.

    Google Scholar 

  29. Farnam M, Mukhtar H., Shariff, A. (2016) Analysis of the influence of CMS variable percentages on pure PES membrane gas separation performance. Procedia Engineering 148:1206–1212.

    Article  CAS  Google Scholar 

  30. Aroua, M.K., WanDaud, W.A., Yin, C.A., Adinata, D. (2008) Adsorption Capacities of Carbon Dioxide, Oxygen, Nitrogen and Methane on Carbon Molecular Basket Derived from Polyethyleneimine Impregnation on Microporous Palm Shell Activated Carbon. Separation and Purification Technology 62:609–613.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Pina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pina, A.C., Tancredi, N., Baldan, M. et al. CO2 capture and biomethane obtention using activated carbon filter of animal origin. MRS Advances 3, 3589–3600 (2018). https://doi.org/10.1557/adv.2018.588

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.588

Navigation