Skip to main content
Log in

Role of Cation-Anion Organic Ligands for Optical Properties of Fully Inorganic Perovskite Quantum Dots

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Application of lead-halide perovskite nanostructures for photovoltaic and light emitting applications depends on fashion of the surface termination. The reasonable choice of surface ligands for perovskite nanostructures prevent formation of trap states and contribute to chemical stability, wide opening of the bandgap, and intensity of absorption and photoluminescence of perovskite nanostructures. This work provides atomistic arguments for dual ligand protocol of surface passivation of fully inorganic perovskite quantum dots with fully organic ligands being a mix of cations (ethyl-ammonium) and anions (acetic) in nearly equal proportions. Computed binding energies of either individual ligands or anion-cation pairs demonstrate high stability in comparison to thermal energy and are concluded to be favourable choice in synthesis of colloidal perovskite quantum dots for light emitting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V., Nanocrystals of Cesium Lead Halide Perovskites (CsPbX(3), X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett 2015, 15 (6), 3692–6.

    Article  CAS  Google Scholar 

  2. Kilina, S.; Kilin, D.; Tretiak, S., Light-Driven and Phonon-Assisted Dynamics in Organic and Semiconductor Nanostructures. Chem Rev 2015, 115 (12), 5929–78.

    Article  CAS  Google Scholar 

  3. Sham, W. K. L. J., Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review 1965, 140 (4A), 1133–1138.

    Article  Google Scholar 

  4. Hohenberg, P.; Kohn, W., Inhomogeneous Electron Gas. Physical Review B 1964, 136 (3B), B864–B871.

    Article  Google Scholar 

  5. Kresse, G.; Furthmuller, J., Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Physical Review B 1996, 54 (16), 11169–11186.

    Article  CAS  Google Scholar 

  6. Kresse, G.; Furthmuller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science 1996, 6 (1), 15–50.

    Article  CAS  Google Scholar 

  7. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Physical Review Letters 1996, 77 (18), 3865–3868.

    Article  CAS  Google Scholar 

  8. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 1999, 59 (3), 1758–1775.

    Article  CAS  Google Scholar 

  9. Junkman, D.; Han, Y.; Vogel, D. J.; D., K., Ab Initio Analysis of Charge Carrier Dynamics in Organic-Inorganic Lead Halide Perovskite Solar Cells. Mater. Res. Soc. Symp. Proc. 2015, 1776, DOI: 10.1557/opl.2015.782.

  10. Zhou, L.; Neukirch, A. J.; Vogel, D. J.; Kilin, D. S.; Pedesseau, L.; Carignano, M. A.; Mohite, A. D.; Even, J.; Katan, C.; Tretiak, S., Density of States Broadening in CH3NH3PbI3 Hybrid Perovskites Understood from ab Initio Molecular Dynamics Simulations. ACS Energy Letters 2018, 3 (4), 787–793.

    Article  CAS  Google Scholar 

  11. Vogel, D. J.; Inerbaev, T. M.; Kilin, D. S., Role of Lead Vacancies for Optoelectronic Properties of Lead-Halide Perovskites. The Journal of Physical Chemistry C 2018, 122 (10), 5216–5226.

    Article  CAS  Google Scholar 

  12. Vogel, D. J.; Kryjevski, A.; Inerbaev, T. M.; Kilin, D. S., Photoinduced Single- and Multiple- Electron Dynamics Processes Enhanced by Quantum Confinement in Lead Halide Perovskite Quantum Dots. The Journal of Physical Chemistry Letters 2017, 8 (13), 3032–3039.

    Article  CAS  Google Scholar 

  13. Forde, A.; Kilin, D., Hole Transfer in Dye-Sensitized Cesium Lead Halide Perovskite Photovoltaics: Effect of Interfacial Bonding. The Journal of Physical Chemistry C 2017, 121 (37), 20113–20125.

    Article  CAS  Google Scholar 

  14. Neugebauer, J.; Scheffler, M., Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Physical Review B 1992, 46 (24), 16067–16080.

    Article  CAS  Google Scholar 

  15. Makov, G.; Payne, M. C., Periodic boundary conditions in ab initio calculations. Phys. Rev. B 1995, 51 (7), 4014–4022.

    Article  CAS  Google Scholar 

  16. Meng, Q. G.; Chen, J. C.; Kilin, D., Proton reduction at surface of transition metal nanocatalysts. Molec. Simulation 2015, 41 (1–3), 134–145.

    Article  CAS  Google Scholar 

  17. Brown, S. L.; Hobbie, E. K.; Tretiak, S.; Kilin, D. S., First-Principles Study of Fluorescence in Silver Nanoclusters. The Journal of Physical Chemistry C 2017, 121 (43), 23875–23885.

    Article  CAS  Google Scholar 

  18. Kilina, S.; Velizhanin, K. A.; Ivanov, S.; Prezhdo, O. V.; Tretiak, S., Surface Ligands Increase Photoexcitation Relaxation Rates in CdSe Quantum Dots. Acs Nano 2012, 6 (7), 6515–6524.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forde, A., Inerbaev, T. & Kilin, D. Role of Cation-Anion Organic Ligands for Optical Properties of Fully Inorganic Perovskite Quantum Dots. MRS Advances 3, 3255–3261 (2018). https://doi.org/10.1557/adv.2018.552

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.552

Navigation